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Chapter 1

Space-Time Adaptive Beamforming
Algorithms for Airborne Radar

Systems

1.1 Introduction

Space-time adaptive processing (STAP) techniques [Klemm (2002)],[Melvin

(2004)] have been thoroughly investigated in the last decades as a key en-

abling technology for advanced airborne radar applications following the

landmark publication by Brennan and Reed [Brennan and Reed (1973)].

A great deal of attention has been given to STAP algorithms and different

strategies to design space-time beamformers to mitigate the effect of clut-

ter and jamming signals [Reed et al. (1974)]- [Guerci (2000)]. It is fully

understood that STAP techniques can improve slow-moving target detec-

tion through better mainlobe clutter suppression, provide better detection

in combined clutter and jamming environments, and offer a significant in-

crease in output signal to- interference-plus-noise-ratio (SINR). Moreover,

it is also well understood that the clutter and the jamming signals often

reside in a low-rank signal subspace, which is typically much lower than

the number of degrees of freedom of the array and the associated space-

time beamformer. Due to its large computational complexity cost by the

matrix inversion operation, the optimum STAP processor is prohibitive for

practical implementation. In addition, another very challenging issue that

is encountered by full-rank STAP techniques is when the number of ele-

ments M in the spatio-temporal beamformer is large. It is well-known that

K ≥ 2M independent and identically distributed (i.i.d) training samples

are required for the filter to achieve the steady performance [Haykin (2002)].

Thus, in dynamic scenarios the full-rank STAP with large M usually fail

or provide poor performance in tracking target signals contaminated by

interference and noise.

In the recent years, a number of innovative space-time beamforming

1
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algorithms have been reported in the literature for clutter and interfer-

ence mitigation in radar systems. These algorithms include reduced-rank

and reduced-dimension techniques [Haimovich (1991)]-[de Lamare and

Sampaio-Neto (2009)], which employ a two-stage processing framework

to exploit the low-rank property of the clutter and the jamming signals.

The first stage performs dimensionality reduction and is followed by second

stage that employs a beamforming algorithm with a reduced dimensional fil-

ter. Another class of important space-time beamforming algorithms adopt

the strategy of compressive sensing and sparsity-aware algorithms, which

exploit the fact that space-time beamformers do not need all their degrees

of freedom to mitigate clutter and jamming signals. These algorithms com-

pute sparse space-time beamformers which can converge faster and are ef-

fective for STAP in radar systems. By exploiting the low-rank properties of

the interference and devising sparse STAP algorithms, designers make use

of prior knowledge about the clutter and the jamming signals. It has been

recently shown that it is beneficial in terms of performance to also exploit

prior knowledge about the environment and the data in the form of a known

covariance data matrix. The class of space-time beamforming algorithms

that exploit different forms of prior knowledge are called knowledge-aided

STAP (KA-STAP) algorithms.

The goal of this chapter is to review the recent work and advances in the

area of space-time beamforming algorithms and their application to radar

systems. These systems include phased-array and multi-input multi-output

(MIMO) radar systems, mono-static and bi-static radar systems and other

configurations. Furthermore, this chapter also describes in detail some of

the most successful space-time beamforming algorithms that exploit low-

rank and sparsity properties as well as the use of prior-knowledge to improve

the performance of STAP algorithms in radar systems.

The chapter is structured as follows. Section 1.2 describes the radar sys-

tem under consideration and signal model used to mathematically describe.

Section 1.3 formulates the problem of designing space-time beamformers

and reviews conventional space-time beamforming algorithms. Section 1.4

examines low-rank space-time beamforming algorithms, whereas Section

1.5 explores the concept of sparsity-aware space-time beamforming algo-

rithms. Section 1.6 studies knowledge-aided beamforming algorithms and

discusses how these techniques can be adopted in existing radar systems.

Section 1.7 is devoted to the presentation of simulation results, discussions

and the comparison of a number of existing algorithms. The chapter ends

with Section 1.8 which gives the concluding remarks of this chapter.
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1.2 System and Signal Models

The system under consideration is a pulsed Doppler radar residing on an

airborne platform. The radar antenna is a uniformly spaced linear antenna

array consisting ofN elements. The radar returns are collected in a coherent

processing interval (CPI), which is referred to as the 3-D radar datacube

shown in Fig. 1(a), where K denotes the number of samples collected to

cover the range interval. The data is then processed at one range of interest,

which corresponds to a slice of the CPI datacube. This slice is a J × N

matrix which consists of N × 1 spatial snapshots for J pulses at the range

of interest. It is convenient to stack the matrix column-wise to form the

M × 1 vector r(i), termed the i-th range gate spacetime snapshot, where

M = JN and 1 < i ≤ K [Klemm (2002)].

The objective of a radar is to ascertain whether targets are present in

the data. Thus, given a space-time snapshot, radar detection is a binary

hypothesis problem, where hypothesis H0 corresponds to the absence of

a target and hypothesis H1 corresponds to the presence of a target. The

radar space-time snapshot is then expressed for each of the two hypotheses

in the following form

H0 : r(i) = v(i);

H1 : r(i) = as+ v(i);
(1.1)

where a is a zero-mean complex Gaussian random variable with variance

σ2
s , v(i) = rc(i) + rj(i) + n(i) contains the input interference-plus-noise

vector which consists of clutter rc(i), jamming rj(i) and the white noise

n(i). These three components are assumed to be mutually uncorrelated.

Thus, theM×M covariance matrixR of the undesired clutter-plus-jammer-

plus-noise component can be modelled as

R = Rc +Rj +Rn (1.2)

where (·)H represents the Hermitian transpose and E[·] denotes expecta-

tion. The noise covariance noise matrix is given by Rn = E[n(i)nH(i)] =

σ2
nI, where σ

2
n is the variance of the noise and I is an identity matrix. The

clutter signal can be modeled as the superposition of a large number of

independent clutter patches with evenly distributed in azimuth about the

receiver. Thus, the clutter covariance matrix can be expressed as

Rc = E[rcr
H
c ] =

Nr∑
k=1

Nc∑
l=1

ξck,l[b(ϑ
c
k,l)b(ϑ

c, H
k,l )⊗ [a(ϖc

k,l)a(ϖ
c, H
k,l ), (1.3)
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where Nr denotes the number of range ambiguities and Nc denotes the

number of the clutter patches. The quantity ξck,l is the power of reflected

signal by the kl-th clutter patch. The symbol ⊗ denotes Kronecker product,

and the quantities b(ϑc, H
k,l and a(ϖc

k,l) denote the spatial steering vector

with the spatial frequency ϑc
k,l and the temporal steering vector with the

normalized Doppler frequencyϖc
k,l for the k, l-th clutter patch, respectively,

which can be expressed as follows

b(ϑc
k,l) =


1

e−j2πϑ

e−j2π2ϑ

...

e−j2π(N−1)ϑ


, a(ϖc

k,l) =


1

e−j2πϖ

e−j2π2ϖ

...

e−j2π(N−1)ϖ


, (1.4)

where ϑ = d
λcos(ϕ)sin(θ) and ϑ = fd/fr, λ is the wavelength, d is the

inter-element spacing which is normally set to half wavelength, and ϕ and

θ are the elevation and the azimuth angles, respectively. The quantities

fd and fr are the Doppler frequency and the pulse repetition frequency,

respectively. The jamming covariance matrix Rj = E[rj(i)r
H
j (i)] can be

written as

Rj =

Nj∑
q=1

ξjq [b(ϑ
j
q)b

H(ϑj
q)]⊗ IK , (1.5)

where ξjq is the power of the q-th jammer. The vector b(ϑj
q) is the spatial

steering vector with the spatial frequency ϑj
q of the q-th jammer and Nj is

the number of jamming signals. The vector s, which is theM×1 normalized

space-time steering vector in the space-time look-direction can be defined

as

s =
√

ξtb(ϑt)a(ϖt), (1.6)

where a(ϖt) is the K×1 normalized temporal steering vector at the target

Doppler frequency ϖt and b(ϑt) is the N × 1 normalized spatial steering

vector in the direction provided by the target spatial frequency ϑt and ξt
denotes the power of the target.

1.3 Conventional Beamforming Algorithms

In order to detect the presence of targets, each range bin is processed by

an adaptive space-time beamformer, which is typically designed to achieve
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maximum output SINR, followed by a hypothesis test to determine the tar-

get presence or absence. The secondary data r(i) are taking from training

samples, which should be ideally i.i.d. training samples but it is often non-

heterogeneous [Klemm (2002)]. The optimum full-rank STAP that maxi-

mizes the SINR can obtained by solving the following minimum variance

distortionless response (MVDR) constrained optimization given by:

wopt = argmin
w

wHRw subject to wHs = 1, (1.7)

where the optimal space-time MVDR beamformer wopt is designed to max-

imize the SINR and to maintain a normalized response in the target spatial-

Doppler look-direction. The solution to the optimization problem above is

described by:

wopt =
R−1s

sHR−1s
. (1.8)

The space-time beamformer wopt can be computed by using the above solu-

tion. Alternatively, the space-time beamformer can be estimated adaptive

algorithms [Haykin (2002)]. These algorithms include the least mean-square

(LMS), the conjugate gradient (CG) and the recursive least-squares (RLS)

techniques. The computational complexity of these algorithms ranges from

linear with M for the LMS to quadratic with M for the CG and RLS algo-

rithms. A common problem with the conventional adaptive algorithms is

that the laws that govern their convergence and tracking behaviors imply

that they depend on M and on the eigenvalue spread of R. This indicates

that their performance degrades significantly when the space-time beam-

former has many parameters for adaptation, which makes the computation

of the parameters of the beamformer slow and costly. This problem can

be addressed by some recent techniques reported in the literature, namely,

low-rank, sparsity-aware and knowledged-aided algorithms.

1.4 Low-Rank Beamforming Algorithms

Reduced-rank adaptive signal processing has been considered as a key tech-

nique for dealing with large systems in the last decade. The basic idea of

the reduced-rank algorithms is to reduce the number of adaptive coeffi-

cients by projecting the received vectors onto a lower dimensional sub-

space which consists of a set of basis vectors. The adaptation of the

low-order filter within the lower dimensional subspace results in signifi-

cant computational savings, faster convergence speed and better tracking
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performance. The first statistical reduced-rank method was based on a

principal-components (PC) decomposition of the target-free covariance ma-

trix [Haimovich (1991)]. Another class of eigen-decomposition methods was

based on the cross-spectral metric (CSM) [Goldstein and Reed (1997c,a)].

Both the PC and the CSM algorithms require a high computational cost

due to the eigen-decomposition. A family of the Krylov subspace methods

has been investigated thoroughly in the recent years. This class of reduced-

rank algorithms, including the multistage Wiener filter (MSWF) [Golstein

et al. (1998); Guerci (2000); Gau and Reed (1998)] which projects the obser-

vation data onto a lower-dimensional Krylov subspace, and the auxiliary-

vector filters (AVF) [Pados and Batalama (1999); Pados and Karystinos

(2001); Pados et al. (2007)]. These methods are relatively complex to im-

plement in practice and may suffer from numerical problems despite their

improved convergence and tracking performance. The joint domain local-

ized (JDL) approach, which is a beamspace reduced-dimension algorithm,

was proposed by Wang and Cai [Wang and Cai (1994)] and investigated

in both homogeneous and nonhomogeneous environments in [Adve et al.

(2000a,b)], respectively. Recently, reduced-rank adaptive processing algo-

rithms based on joint iterative optimization of adaptive filters [de Lamare

and Sampaio-Neto (2007a); Fa et al. (2008)] and based on an adaptive

diversity-combined decimation and interpolation scheme [de Lamare and

Sampaio-Neto (2007b, 2009)] were proposed, respectively.

The basic idea of low-rank algorithms is to reduce the number of adap-

tive coefficients by projecting the received vectors onto a lower dimensional

subspace as illuminated in the figure. Let SD denote the M × D rank-

reduction matrix with column vectors which form an M × 1 basis for a

D-dimensional subspace, where D < M . Thus, the received signal r(i) is

transformed into its reduced-rank version rD(i) given by

rD(i) = SH
Dr(i) (1.9)

The reduced-rank signal is processed by an adaptive low-rank space-time

beamformer wD with D coefficients. Subsequently, the decision is made

based on the output of the beamformer y(i) = wH
DSH

Dr(i). A designer

can compute the parameters of the beamformer by solving the following

constrained optimization problem:

wD,opt = argmin
wD

wH
DSH

DRSDwD subject to wH
DSH

Ds = 1, (1.10)

The optimum low-rank MVDR solution for the above problem is given by

wD,opt =
(SH

DRSD)−1SH
Ds

sHSD(SH
DRSD)−1SH

Ds
=

R−1
D sD

sHDR−1
D sD

. (1.11)
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where RD = SH
DRSD denotes the low-rank covariance matrix and sD =

SH
Ds denotes the low-rank steering vector. The key challenge in the design

of low-rank STAP algorithms is find a cost-effective method to compute the

rank-reduction matrix SD.

1.4.1 Eigenvalue-decomposition-based algorithms

The eigenvalue-decomposition (EVD)-based beamforming algorithms are

also known as PC-based algorithms and have been originally reported as the

eigencanceler method. These PC-based algorithms refer to the beamformers

constructed with a subset of the eigenvectors of the interference-only co-

variance matrix associated with the eigenvalues of largest magnitude. The

application of this method to radar was reported in [Haimovich (1991)].

The basic idea of the EVD-based beamformer is to approximate the

M ×M covariance matrix R of the received data as follows:

R =
D∑

d=1

λdvdv
H
d , (1.12)

where the M×1 vector vd corresponds to the dth eigenvector of R and λd is

the dth eigenvalue of R. By assuming that the eigenvalues are obtained in

decreasing order of magnitude, the EVD-based method approximates R us-

ing its D dominant eigenvectors. The rank-reduction matrix is constructed

by using the D dominant eigenvectors as described by

SD = [v1v2 . . .vD] (1.13)

The low-rank MVDR solution for the above problem is given by

wD =
SD(SH

DRSD)−1SH
Ds

sHSD(SH
DRSD)−1SH

Ds
=

(
∑D

d=1 λ
−1
d vdv

H
d )s

sH(
∑D

d=1 λ
−1
d vdvH

d )s
. (1.14)

The EVD-based low-rank MVDR space-time beamformer described above

does not take into account the target steering vector s when selecting a

suitable subspace representation of the interference. Clearly, this low-rank

space-time beamformer requires the computation of an EVD, which has a

computational cost that is cubic with M [Golub and van Loan (2002)]. In

order to reduce this computational complexity, a designer can resort to sub-

space tracking algorithms which bring the cost down to O(M2). Another

technique associated with EVD-based beamforming that can improve the

performance of low-rank MVDR space-time beamformers is the method

called cross-spectral metric (CSM) [Goldstein and Reed (1997c)]. The
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CSM approach chooses the set of D eigenvectors for the rank-reduction

matrix which optimizes the desired criterion, namely, the maximization

of the SINR, in opposition to the PC method which always chooses the

dominant eigenvectors.

1.4.2 Krylov subspace-based algorithms

The first Krylov methods, namely, the conjugate gradient (CG) method

[Hestenes and Stiefel (1952)] and the Lanczos algorithm [Lanczos (1952)]

have been originally proposed for solving large systems of linear equations.

These algorithms used in numerical linear algebra are mathematically iden-

tical to each other and have been derived for Hermitian and positive def-

inite system matrices. Other techniques have been reported for solving

these problems and the Arnoldi algorithm [Arnoldi (1951)] is a computa-

tionally efficient procedure for arbitrarily invertible system matrices. The

multistage Wiener filter (MSWF) [Goldstein and Reed (1997c)] and the

auxiliary vector filtering (AVF) [Pados and Batalama (1999)] algorithms

are based on a multistage decomposition of the linear MMSE estimator. A

key feature of these methods is that they do not require an EVD and have a

very good performance. It turns out that Krylov subspace algorithms that

are used for solving very large and sparse systems of linear equations, are

highly suitable alternatives for designing low-rank space-time beamforming

algorithms in radar systems. The basic idea of Krylov subspace algorithms

is to construct the rank-reduction matrix SD with the following structure:

SD =
[
q Rq . . . RD−1q

]
, (1.15)

where q = s
||s[i]|| and || · || denotes the Euclidean norm (or the 2-norm)

of a vector. In order to compute the basis vectors of the Krylov subspace

(the vectors of SD), a designer can either directly employ the expression

in (1.15) or resort to more sophisticated approaches such as the Arnoldi

iteration [Arnoldi (1951)]. The low-rank MVDR solution for the space-

time beamformer using the Krylov subspace is given by

wD =
(SH

DRSD)−1SH
Ds

sHSD(SH
DRSD)−1SH

Ds
. (1.16)

An appealing feature of the Krylov subspace algorithms is that the required

model order D does not scale with the system size. Indeed, when M goes to

infinity the required D remains a finite and relatively small value. This re-

sult was established in [Xiao and Honig (2005)]. Among the disadvantages

of Krylov subspace methods are the relatively high computational cost of
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constructing SD (O(DM2)), the numerical instability of some implemen-

tations and the lack of flexibility for imposing constraints on the design of

the basis vectors.

1.4.3 JIO-based algorithms

The aim of this part is to introduce the reader to low-rank beamforming

algorithms based on joint iterative optimization (JIO) techniques. The idea

of these methods is to design the main components of a low-rank space-time

beamforming scheme via a general optimization approach. The basic ideas

of JIO techniques have been reported in [de Lamare and Sampaio-Neto

(2007a)]. Amongst the advantages of JIO techniques are the flexibility to

choose the optimisation algorithm and to impose constraints, which pro-

vides a significant advantage over eigen-based and Krylov subspace meth-

ods. One disadvantage that is shared amongst the JIO techniques, eigen-

based and Krylov subspace methods are the complexity associated with the

design of the matrix SD. For instance, if we are to design a beamforming

algorithm with a very large M , we still have the problem of having to design

an M ×D rank-reduction matrix SD.

In the framework of JIO techniques, the design of the matrix SD and

the beamforming vector wD for a fixed model order D will be dictated by

the optimization problem. To this end, we will focus on a generic SD =[
s1 s2 . . . sD

]
, in which the basis vectors sd, d = 1, 2, . . . , D will be obtained

via an optimization algorithm and iterations between the SD andwD will be

performed. The JIO method consists of solving the following optimization

problem [
SD,opt,wD,opt

]
= arg min

SD,wD

wH
DSH

DRSDwD︸ ︷︷ ︸
x(i)︸ ︷︷ ︸

C(SD,wD)

,

subject to wH
DSH

Ds = 1

(1.17)

where it should be remarked that the optimization problem in (1.17) is

non convex, however, the algorithms do not present convergence problems.

Numerical studies with JIO methods indicate that the minima are identical

and global. Proofs of global convergence have been established with differ-

ent versions of JIO schemes [de Lamare and Sampaio-Neto (2007a)], which

demonstrate that the LS algorithm converges to the reduced-rank Wiener

filter.
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In order to solve the above problem, we resort to the method of Lagrange

multipliers [Haykin (2002)] and transform the constrained optimization into

an unconstrained one expressed by the Lagrangian

L(SD,wD) = wH
DSH

DRSDwD + λ(w̄H
DSH

Ds− 1), (1.18)

where λ is a scalar Lagrange multiplier, ∗ denotes complex conjugate and

the operator ℜ[·] selects the real part of the argument. By fixing wD,

minimizing (1.18) with respect to SD and solving for λ, we obtain

SD =
R−1swH

DR−1
w̄

wH
DR−1

w̄ wDsHR−1s
, (1.19)

where R = E[r(i)rH(i)] and Rw̄ = E[w̄Dw̄H
D ]. By fixing SD, minimizing

(1.18) with respect to wD and solving for λ, we arrive at the expression

wD =
R̄

−1
s

sHR−1s
, (1.20)

where RD = E[SH
Dr(i)rH(i)SD] = E[rD(i)rHD(i)], sD = SH

Ds. Note that

the expressions in (1.19) and (1.20) are not closed-form solutions for wD

and SD since (1.19) is a function of wD and (1.20) depends on SD. Thus,

it is necessary to iterate (1.19) and (1.20) with initial values to obtain a

solution. Unlike the Krylov subspace-based methods [Goldstein and Reed

(1997a)] and the AVF [Pados and Karystinos (2001)] methods, the JIO

scheme provides an iterative exchange of information between the low-rank

beamformer and the rank-reduction matrix and leads to a simpler adaptive

implementation. The key strategy lies in the joint optimization of the filters.

The rank D must be set by the designer to ensure appropriate performance

or can be estimated via another algorithm. In terms of complexity, the JIO

techniques have a computational cost that is related to the optimization

algorithm. With recursive LS algorithms the complexity is quadratic with

M ((O(M2)), whereas the complexity can be as low as linear with DM

when stochastic gradient algorithms are adopted [de Lamare and Sampaio-

Neto (2009)].

1.4.4 JIDF-based algorithms

This section is devoted to presentation of a low-rank space-time beamform-

ing technique based on the joint interpolation, decimation and filtering

(JIDF) concept [de Lamare and Sampaio-Neto (2009)]. The JIDF ap-

proach allows a designer to compute the parameters of the rank-reduction
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matrix and the low-rank space-time beamformer with a low complexity.

The motivation for designing a rank-reduction matrix based on interpola-

tion and decimation comes from two observations. The first is that rank

reduction can be performed by constructing new samples with interpola-

tors and eliminating (decimating) samples that are not useful in the STAP

design. The second comes from the structure of the rank-reduction matrix,

whose columns are a set of vectors formed by the interpolators and the

decimators.

In the JIDF scheme, the number of elements for adaptive processing

is substantially reduced, resulting in considerable computational savings

and very fast convergence performance for the radar applications. The

M × 1 received vector r(i) is processed by a multiple processing branch

(MPB) scheme with B branches, where each spatio-temporal processing

branch contains an interpolator, a decimation unit and a low-rank space-

time beamformer. In the b-th branch, the received vector r(i) is filtered by

the interpolator vb = [vb,0 vb,1 . . . vb,I−1]
T with I coefficients, resulting in

an interpolated received vector rb(i) with M samples, which is expressed

by

rb(i) = V H
b r(i), (1.21)

where the M ×M Toeplitz convolution matrix is given by

V b =



vb,0 0 . . . 0
... vb,0

...
...

vb,I−1

...
... 0

0 vb,I−1

... 0

0 0
...

...
...

...
... 0

0 0
... vb,0


(1.22)

The vector rb(i) can be expressed in an alternative way that is useful for

the design of the JIDF scheme and is described by

rb(i) = V H
b r(i) = ℜ0(i)vb, (1.23)

where the M × I matrix ℜo(i) with the samples of r(i) has a Hankel struc-
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ture and is described by

ℜo(i) =


r0(i) r1(i) . . . rI−1(i)

r1(i) r2(i) . . . rI(i)
...

...
. . .

...

rM−2(i) rM−1(i) . . . 0

rM−1(i) 0 . . . 0

 (1.24)

The dimensionality reduction is performed by a decimation unit withD×M

decimation matrices Db that transforms rI(i) into D × 1 vectors rD,b(i)

with b = 1, . . . , B, where D = M/L is the rank of the resulting system of

equations that will be generated and L is the decimation factor. The D×1

vector rD,b(i) for branch b is expressed by

rD,b = SH
D,br(i) = DD,bV

H
b r(i)

= DD,bℜo(i)v
(1.25)

where SD,b is the rank-reduction matrix and the vector rD,b(i) for branch

b is used in the minimization of the output power for branch b. The output

at the end of the JIDF scheme y(i) is selected according to

y(i) = ybs(i) when bs = argmin
b

|yb|2 (1.26)

where B is a parameter to be set by the designer. For the computation of

the parameters of the JIDF scheme, it is fundamental to express the output

yb(i) as a function of the interpolator vb, the decimation matrix DD,b and

the low-rank space-time beamformer wD,b as follows:

yb(i) = wH
D,bS

H
D,br(i)

= wH
D,bDD,bℜo(i)v,

(1.27)

where the expression (1.27) indicates that the dimensionality reduction car-

ried out by the JIDF scheme depends on finding appropriate vb, DD,b and

wD,b. Unlike the remaining low-rank beamforming techniques, the JIDF is

able to substantially reduce the cost of the rank-reduction matrix.

The parameters of the JIDF scheme that performs low-rank space-time

MVDR beamforming can be computed by solving the following optimiza-

tion problem

[wD,opt,vopt,DD,bs ] = arg min
wD,b,vb,DD,b

wH
D,bE[DD,bℜo(i)vv

HℜH
o (i)DH

D,b]wD

subject to wH
D,bDD,bSovb = 1,

(1.28)
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where So is M × I steering matrix with a Hankel structure, which has the

same form as ℜo(i) and is given by

So(i) =


s0(i) s1(i) . . . sI−1(i)

s1(i) s2(i) . . . sI(i)
...

...
. . .

...

sM−2(i) sM−1(i) . . . 0

sM−1(i) 0 . . . 0

 . (1.29)

The constrained optimization in (1.28) can be transformed into an uncon-

strained optimization problem by using the method of Lagrange multipliers,

which results in

L(wD,b,vb,DD,b) = wH
DE[DD,bℜo(i)vv

HℜH
o (i)DH

D,b]wD+λ(wH
DDD,bSov−1),

(1.30)

where λ is a Lagrange multiplier.

The strategy to compute the parameters of the low-rank space-time

beamformer based on the JIDF scheme is to minimize the cost function

with respect to a set of parameters and fix the remaining parameters. By

minimizing (1.30) with respect to vb, we obtain

vb =
R−1

v,bsv,b

sHv,bR
−1
v,bsv,b

, (1.31)

where Rv,b = E[rv,br
H
v,b] is the I × I autocorrelation matrix, rv,b =

DH
D,bR

H
o wD,b, and sv,b = DH

D,bS
H
o wD,b is the I× low-rank steering vector.

By minimizing (1.30) with respect to wD,b, we have

wD,b =
R−1

w,bsw,b

sHw,bR
−1
w,bsw,b

, (1.32)

where Rw,b = E[rw,br
H
w,b] is the D × D autocorrelation matrix, rw,b =

DD,bRovb, and sw,b = DD,bSovb is the D× low-rank steering vector. In

order to compute vb and wD,b, a designer needs to iterate them for each

processing branch b.

The decimation matrix DD,b is selected to minimize the square of the

output of the beamformer yb(i) obtained for all the B branches

DD,b = DD,bs [i] when bs = arg min
1≤b≤B

|yb(i)|2, (1.33)

The design of the decimation matrixDD,b imposes constraints on the values

of the elements of the matrix such that they only take the value zero or

one. Since the optimal approach for the design of DD,b corresponds to an
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exhaustive search, we consider a suboptimal technique that employs pre-

stored patterns. The decimation scheme employs a structure formed in the

following way

SD,b = [ϕb,1 ϕb,2 ϕb,D], (1.34)

where ϕb,d is anM×1 vector composed of a single one and zeros as described

by

ϕb,d = [0, . . . , 0︸ ︷︷ ︸
zb,d

, 1, 0, . . . , 0︸ ︷︷ ︸
M−zb,d−1

], (1.35)

where zb,d is the number of zeros before the only element equal to one. We

set the value of zb,d in a deterministic way which can be expressed as

zb,d =
M

D
× (d− 1) + (b− 1). (1.36)

It is necessary to iterate (1.31), (1.32) and (1.33) in an alternated form

(one followed by the other) with an initial value to obtain a solution. The

expectations can be estimated either via time averages or by instantaneous

estimates and with the help of adaptive algorithms.

1.5 Sparsity-aware Beamforming Algorithms

This section considers space-time beamforming algorithms that exploit the

sparsity encountered in the data processed by radar systems. In particu-

lar, the motivation for exploiting the sparsity of data vectors observed by

radar systems is given and a brief discussion on the suitability of sparsity-

aware algorithms for radar applications is provided. A general approach

to design space-time beamforming algorithms based on the l1-norm regu-

larization is described. The main principle is to employ a reduced number

of weights to suppress the clutter and the jamming signals encountered in

radar applications.

Recently, motivated by compressive sensing (CS) techniques used in

radar, several authors have considered CS ideas for moving target indication

(MTI) and STAP problems [Maria and Fuchs (2006)]-[Selesnick (2010)].

The core notion in CS is to regularize a linear inverse problem by includ-

ing prior knowledge that the signal of interest is sparse [Parker and Potter

(2010)]. These works on space-time beamforming techniques based on CS

rely on the recovery of the clutter power in angle-Doppler plane, which is

usually carried out via convex optimization tools. However, these methods
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are based on linear programming and have a quite high computational com-

plexity (O(K3)), where K is the dimension of the angle-Doppler plane. In

this section, we describe the concept of a sparsity-aware STAP (SA-STAP)

algorithm that can improve the detection capability using a small num-

ber of snapshot. To overcome the high complexity of the CS-STAP type

algorithm, we design the STAP algorithm with another strategy, by impos-

ing the sparse regularization to the minimum variance (MV) cost function.

Since the interference variance has a low rank property, we assume that a

number of samples of the data cube are not meaningful for processing and

the optimal STAP filter weight vector is sparse, or nearly sparse. Then,

we exploit this feature by using a l1-norm regularization. With this moti-

vation, the STAP algorithm design becomes a mixed l1-norm and l2-norm

optimization problem.

The conventional space-time beamforming algorithms do not exploit

the sparsity of the received signals. In this exposition, it is assumed that

a number of samples of the data cube are not meaningful for processing

and a reduced number of active weights of the space-time beamformer can

effectively suppress the clutter and the jamming signals. Specifically, a

sparse regularization is imposed to the MV cost function. Thus, the space-

time beamformer design can be described as the following optimization

problem

wopt = argmin
w

wHRw

subject to wHs = 1 and ||w||1 = 0,
(1.37)

where the objective of the l1-norm regularization is to force the components

of the space-time beamformer w to zero [Angelosante et al. (2010)]. This

problem can be solved using the method of Lagrange multipliers, which

results in the following unconstrained cost function

L(w, α, λ) = wHRw + α(wHs− 1) + λ(||w||1), (1.38)

The unconstrained cost function above is convex, however, it is non-

differentiable which makes it difficult for one to use the method of La-

grange Multipliers directly and obtain an expression for the space-time

beamformer. To this end, the following approximation to the regulariza-

tion term is employed

||w||1 ≈ wHΛw, (1.39)

where

Λ = diag

(
1

|w1|+ ϵ

1

|w2|+ ϵ
. . .

1

|wM |+ ϵ

)
, (1.40)
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where ϵ is a small positive constant. Simultaneously, we assume that the

partial derivative of wHΛw with respect to w∗ is given by

∂wHΛw

∂w∗ ≈ Λw. (1.41)

With the development above, an approximation to the unconstrained cost

function can be employed as described by

L(w, α, λ) ≈ wHRw + α(wHs− 1) + λwHΛw, (1.42)

By computing the gradient terms with respect to w∗ and α and equat-

ing them to zero, we obtain the following expression for the space-time

beamformer

w =
(R+ λΛ)−1s

sH(R+ λΛ)−1s
. (1.43)

Comparing (1.43) with the conventional optimal space-time beamformer in

(1.8), we find that there is an additional term λΛ in the inverse of the in-

terference covariance matrix R, which is due to the l1-norm regularization.

The term λ is a positive scalar which provides a trade-off between the spar-

sity and the output interference power. The larger the chosen λ, the more

components are shrunk to zero [Zibulevsky and Elad (2010)]. It should

also be remarked that the expression for the beamformer in (1.43) is not

a closed-form solution since Λ is a function of w. Thus it is necessary to

develop an iterative procedure to compute the parameters of the space-time

beamformer.

1.6 Knowledge-aided Beamforming Algorithms

Although STAP techniques are considered efficient tools for detection of

slow targets by airborne radar systems in strong clutter environments

[Klemm (2002)], due to the very large number of degrees of freedom (DoFs)

conventional space-time beamformers have a slow convergence and require

about twice the DoFs of the independent and identically distributed (IID)

training snapshots to yield an average performance loss of roughly 3dB

[Ward (1994)]. In real scenarios, it is hard to obtain so many IID train-

ing snapshots, especially in heterogeneous environments. Low-rank [Guerci

(2000)]-[de Lamare and Sampaio-Neto (2009)] and sparsity-aware [Maria

and Fuchs (2006)]-[Yang et al. (2011)] methods have been considered

to counteract the slow convergence of the conventional space-time beam-

formers. Nevertheless, there are other alternatives to improve the training
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of STAP algorithms and improve their performance. Recently developed

knowledge-aided (KA) STAP algorithms have received a growing interest

and become a key concept for the next generation of adaptive radar sys-

tems [Wicks et al. (2006)]-[Fa et al. (2010)]. The core idea of KA-STAP

is to incorporate prior knowledge, provided by digital elevation maps, land

cover databases, road maps, the Global Positioning System (GPS), previ-

ous scanning data and other known features, to compute estimates of the

clutter covariance matrix with high accuracy [?]. Prior work on KA-STAP

algorithms include the exploitation of prior knowledge of the clutter ridge

to form the STAP filter weights [?], use of prior knowledge about the ter-

rain [Capraro et al. (2006)] and prior knowledge about the covariance

matrix of the clutter and the jamming signals [Blunt et al. (2006)]-[Fa et

al. (2010)].

In this section, we discuss a strategy to mitigate the deleterious effects

of the heterogeneity in the secondary data, which makes use of a priori

knowledge of the clutter covariance matrix and has recently gained signifi-

cant attention in the literature [Wicks et al. (2006)]-[Fa et al. (2010)]. In

KA-STAP techniques, there are two basic tasks that need to be addressed:

the first one is how to obtain prior knowledge from the terrain knowledge

of the clutter and how to estimate the real interference covariance matrix

with the prior knowledge [Wicks et al. (2006)]-[Capraro et al. (2006)]

and the second is how to apply the covariance matrix estimates in the de-

sign of the space-time beamforming algorithm [Blunt et al. (2006)]-[Fa et

al. (2010)]. We first review how a designer can obtain prior knowledge

of the clutter and employ this knowledge to build a known covariance ma-

trix Ro. Then, we present a method to combine this prior knowledge with

commonly used estimation techniques to compute the covariance matrix of

the received vector r(i), resulting in a combined covariance matrix estimate

R̂c for use in the space-time beamformer that is more accurate and has an

enhanced performance.

The optimal space-time beamformer employs the following expression

to compute its parameters

w =
R̂

−1
s

sHR̂
−1

s
, (1.44)

where an estimate of the covariance matrix is typically obtained by

R̂ =
1

K

K∑
k=1

r(k)rH(k), (1.45)
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where r(k) is taken from secondary data. The estimate R̂ can be sufficiently

accurate when K is at least twice as great as M [Brennan and Reed (1973)]

and the training samples are assumed i.i.d. However, it is by now well

understood that the clutter environments are often heterogeneous and this

leads to performance degradation on space-time beamforming. KA-STAP

techniques can significantly help to combat the heterogeneity [Stoica et al.

(2008)].

With KA techniques the covariance matrix Rc is estimated by combin-

ing an initial guess of the covariance matrix Ro derived from the digital

terrain database or the data probed by radar in previous scans, and the

sample average covariance matrix estimate in the present scan R̂ so that

Rc = αRo + (1− α)R̂, (1.46)

where 0 ≤ α ≤ 1. Alternatively, this principle can be applied to the inverse

of the covariance matrix estimate

R−1
c = ηR−1

o + (1− η)R̂
−1

, (1.47)

where 0 ≤ η ≤ 1.

In order to compute the parameter η, we need to consider the optimiza-

tion problem

dd (1.48)

1.7 Simulations

1.8 Concluding Remarks
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