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Abstract

A space-time adaptive decision feedback (DF) receiver using recurrent neural networks (RNN) is proposed

for joint equalization and interference suppression in direct-sequence code-division-multiple-access (DS-CDMA)

systems equipped with antenna arrays. The proposed receiver structure employs dynamically driven RNNs in the

feedforward section for equalization and multi-access interference suppression and a finite impulse response (FIR)

linear filter in the feedback section for performing interference cancellation. A data selective gradient algorithm,

based upon the set-membership design framework, is proposed for the estimation of the coefficients of RNN

structures and is applied to the estimation of the parameters of the proposed neural receiver structure. Simulation

results show that the proposed techniques achieve significant performance gains over existing schemes.
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I. INTRODUCTION

CODE division multiple access (CDMA) implemented with direct sequence (DS) spread-spectrum

signalling is currently deployed in many wireless communication systems. Such services include

third-generation (3G) cellular telephony, indoor wireless networks, terrestrial and satellite communication

systems. The advantages of CDMA include good performance in multi-path channels, flexibility in the

allocation of channels, increased capacity in bursty and fading environments and the ability to share

bandwidth with narrowband communication systems without deterioration of either’s systems performance

[1], [2].

The capacity of a DS-CDMA network is limited by different types of interference, namely, narrowband

interference (NBI), multi-access interference (MAI), inter-symbol interference (ISI) and the noise at the

receiver. The major source of interference in most CDMA systems is MAI, which is highly structured

and arises due to the fact that users communicate through the same physical channel with non-orthogonal

signals. The multiple propagation paths of the channel can destroy the orthogonality of the signals at

the receiver, giving rise to MAI even when the users employ orthogonal signatures. For non-orthogonal

signatures the channel and the lack of synchronism between users can further increase the level of MAI.

The conventional (single-user) receiver that employs a filter matched to the signature sequence does

not suppress MAI and is very sensitive to differences in power between the received signals (near-far

problem). In order to mitigate the effect of interference in CDMA systems, a designer can resort to

multiuser detection techniques for MAI suppression, and antenna arrays, which perform spatial filtering

and can reduce the impact of interference. The optimal multiuser detector of Verdu [3] suffers from

exponential complexity and requires the knowledge of timing, amplitude and signature sequences. This

has motivated the development of various sub-optimal strategies: the linear [4] and decision feedback [5]

receivers, the successive interference canceller [6] and the multistage detector [7]. The combination of

multiuser detection and beamforming can provide an enhanced performance for MAI and ISI suppression

[1], [2]. This requires the joint processing of the data received at an antenna array with elements closely

spaced and the estimation of the direction of arrival (DoA) and the channel information.
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In current third-generation (3G) wireless cellular communications, there are some specific features in the

operation of the systems such as the use of antenna arrays by the base stations for increasing the capacity

in the uplink (mobile terminals to base station) and different data rates and quality of service requirements

[8]. In particular, third-generation wideband DS-CDMA systems have multi-code capabilities, in which the

user signals with high data rate (HD) can be accommodated by reducing the processing gain Nh and using

a low spreading factor and higher power levels [8]. In these scenarios, users are equipped with multiple

processing gains, operate at different data rates, and HD users operate at higher signal-to-noise ratios

(SNRs). The SNR is proportional to their data rates, which leads to a situation where they experience a

relatively low level of MAI but more significant level of ISI. In contrast, low data rate (LD) users, that

work with larger spreading factors and lower SNRs, encounter higher levels of MAI and near-far effects.

In order to design an effective space-time receiver for interference mitigation in DS-CDMA systems

employing multi-code capabilities and antenna arrays, we investigate in this work the use of receiver

structures based on recurrent neural networks and decision feedback schemes. One motivation for this

work is that neural networks provide good nonlinear mapping of the inverse model of the channel and can

deal with the uncertainty and interference present in the received data. Therefore, receivers based on neural

networks outperform those based on FIR linear filters. Despite the increased complexity over receivers

with FIR linear filters, the deployment of neural structures is feasible in situations where the number of

processing elements is not very large, i.e., the spreading factor of CDMA systems is low and the number of

HD users is small. Such situations appear in the context of 3G wireless communications [8]. Recent work

on equalization and modelling of nonlinear systems has shown that recurrent neural networks (RNNs)

are superior in bit error rate (BER) performance to multilayer perceptrons (MLPs), radial basis functions

(RBFs) [9] and FIR linear filters. Prior work on equalization structures also demonstrated that decision

feedback (DF) neural equalization structures are better than neural schemes without DF and DF and linear

equalizers with linear FIR filters [10]. In the context of CDMA systems, existing works on neural and

related structures are restricted to MLPs [11], RBFs [12], support vector machines (SVMs) [13] and to

static channels, and little attention has been given to RNNs and DF structures. This is especially relevant
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for the uplink of wireless communications systems, where the base station can afford an antenna array

and more complex algorithms as compared to the mobile terminals. In this case, the trade-off between

computational complexity and superior performance is quite attractive.

In order to estimate the parameters of the receiver, a designer must resort to a training algorithm.

Amongst the available training methods for neural detectors, one can employ gradient based approaches

such as the back propagation algorithm for MLPs [9] and the real time recurrent learning (RTRL) or fast

least-squares (LS) and Kalman-based techniques [14] for RNNs. On one hand, gradient-type approaches

for neural schemes are simpler to implement, exhibit low complexity but possess slow convergence rates

and have to deal with the problem of vanishing gradients [9] for RNNs. On the other hand, LS and

Kalman algorithms have fast convergence but exhibit very high computational complexity and numerical

problems for implementation. This motivates the search for novel approaches to training RNNs that possess

fast convergence, low complexity and flexibility. The algorithm can be also applied to problems such as

estimation and tracking of non-linear and dynamic processes and modelling of time-varying non-linear

systems [9]. In this context, set-membership (SM) filtering [15], [16] represents a class of recursive

estimation algorithms that, on the basis of a pre-determined error bound, seeks a set of parameters that

yield bounded output errors. In particular, the SM approach leads to low-complexity gradient algorithms

with excellent convergence and tracking performance due to the use of an adaptive step size and data

selective updates. The appealing feature of SM algorithms is that they are able to significantly improve

the convergence and tracking of estimators and possess a complexity lower than conventional estimation

algorithms due to their sparse updates. The existing works on SM algorithms deal with the adaptation

of linear FIR filters and there is no SM algorithm for training important neural structures such as RNNs

available.

In this work, our first contribution is to present an adaptive space-time adaptive DF multiuser receiver

structure for HD users with antenna arrays, using dynamically driven RNNs [9] in the feedforward section

and FIR linear filters in the feedback section for cancelling the associated HD and LD users. These RNNs

have not been considered for the problem of space-time multiuser detection so far. The advantage of
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antenna arrays lies in the spatial separation of the interfering users, increasing the capacity of the system.

The proposed structure employs antenna arrays combined with a neural RNN processor and a DF structure,

which are shown to provide considerable capacity gains over schemes with FIR linear filters. The second

contribution of this work is the development of a novel data-selective algorithm for parameter estimation

in RNNs using the set-membership estimation framework [15], [16]. The proposed algorithm is applied

here to the problem of space-time neural receivers for DS-CDMA systems, even though, the algorithm

is general and can be used for other applications of neural networks. It should also be remarked that

some very recent contributions [17]-[24], which constitute the state-of-the-art in the area of RNN, can be

considered for further investigation in the context of interference mitigation in communication systems such

as CDMA, OFDM and MIMO [25]. However, we have opted to focus here on a RNN scheme combined

with FIR filters in a decision feedback architecture, its application to space-time CDMA systems and the

development of a novel estimation technique.

This paper is structured as follows. Section II briefly describes the space-time DS-CDMA commu-

nication system model and formulates the problem. The proposed space-time DF neural receivers for

joint equalization and multiuser detection are presented in Section III. The novel set-membership adaptive

algorithms for the neural structures are presented in Section IV. Section V is dedicated to the presentation

and discussion of the simulation results and Section VI gives the concluding remarks of this work and

comments on possible extensions and future work.

II. SPACE-TIME DS-CDMA SYSTEM MODEL AND PROBLEM STATEMENT

Let us consider the uplink of an asynchronous multi-code QPSK DS-CDMA system with L paths and

2 classes of K = Kh +Kl users, where Kh is the number of HD users with Nh chips per symbol and

Kl the number of LD users with Nl chips per symbol, as depicted in Fig. 1. These QPSK symbols are

spread with unique sequences for each user, modulated and transmitted over a communication channel. At

the receiver equipped with antenna arrays, the composite signal is demodulated, sampled at chip rate and

applied to a bank of filters matched to the users´ effective spatial spreading sequences. In what follows,
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we mathematically detail these operations and describe the signal processing.

The transmitted signal for the kth user amongst the HD users and the qth user amongst the LD users

are given by

xhk(t) = Ah
k

∞∑
i=−∞

bhk(i)s
h
k(t− iTh)

xlq(t) = Al
q

∞∑
i=−∞

blk(i)s
l
q(t− iTl)

(1)

where the equiprobable symbols bhk(i) and blq(i) ∈ {±1,±j}/
√
2 with j2 = −1 denote the i-th symbol

for users k and q, the real valued spreading waveforms and the amplitude associated with HD user k and

LD user q are shk(t), s
l
q(t), A

h
k and Al

q, respectively.

The spreading waveforms for the HD and LD users are expressed by shk(t) =
∑Nh

i=1 a
h
k(i)ϕ(t− iTc) and

slk(t) =
∑Nl

i=1 a
l
k(i)ϕ(t − iTc), respectively, where ahk(i) ∈ {±1/

√
Nh}, alk(i) ∈ {±1/

√
Nl} , ϕ(t) is the

chip waveform, Tc is the chip duration and Nh = Th/Tc and Nl = Tl/Tc are the processing gains of the

HD and LD users, respectively. In practice, HD users can use Nh = βNl, being β = 2, 4, 8, 16, 32, the

smallest Nl = 8 and the largest Nh = 256 [31]. Assuming that the receiver with linear antenna arrays is

synchronized with the main path and identical fading is experienced by all antenna elements for each path

of each user signal, the coherently demodulated composite received signal at the pth antenna element is

rp(t) =

Kh∑
k=1

L−1∑
m=0

hhk,m(t)e
−jΘh

k,mxhk(t− τhk,m − dhk)

+

Kl∑
q=1

L−1∑
m=0

hlq,m(t)e
−jΘl

q,mxlq(t− τ lq,m − dlq) + n(t)

(2)

where Θh
k,m = 2π(p− 1)(d/λ) sin(ϕh

k,m) and Θl
q,m = 2π(p− 1)(d/λ) sin(ϕl

q,m) are the delay shifts of the

mth path of the kth HD user and the qth LD user, respectively. The quantities ϕh
k,m and ϕl

q,m are the

directions of arrival (DoA) of the signals of the HD user k and LD user q and their mth paths, d = λ/2

is the spacing between sensors and λ is the carrier wavelength. The channel coefficients associated with

the m-th path and the k-th HD user are hhk,m(t), d
h
k ∈ [0, Nh) is the delay of the kth user taken from

a discrete uniform random variable between 0 and Nh and τhk,m is the delay of the mth path of the kth

user, whereas the channel coefficients associated with the m-th path and the q-th LD user are hlq,m(t),
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dlq ∈ [0, Nl) is the delay of the qth user taken from a discrete uniform random variable between and Nl

0 and τ lq,m is the delay of the mth path of the qth LD user. The coefficients of the channels for both LD

and HD users are modelled as a tapped-delay-line and their coefficients can be computed according to an

available standard such as the UMTS model [31].

We assume that the delays are multiples of the chip periods, the channel is constant during each symbol

interval (the coherence time of the channel does not exceed that of the symbol - this is typical in 3G

systems [8]), the spreading codes are repeated from symbol to symbol, and the receiver with a J-element

linear antenna array is perfectly synchronized with the main path. The complex envelope of the received

waveforms after filtering by a chip-pulse matched filter and sampled at chip rate yields the discrete-time

samples for the user of interest at the pth antenna element

rp(n) =

Kh∑
k=1

L−1∑
m=0

hhk,me
−jΘh

k,mxhk,m(nTc − τhk,m − dhk)

+

Kl∑
q=1

L−1∑
m=0

hlq,me
−jΘl

q,mxlq,m(nTc − τ lq,m − dlq) + np(n)

(3)

By collecting these samples from each antenna element and organizing them into a JM × 1 observation

vector corresponding to the ith signalling interval, we obtain

r(i) =

Kh∑
k=1

xk(i) +

Kl∑
q=1

zq(i) + η(i) + n(i) (4)

where M = Nh + L − 1, the kth HD user signal is given by xk(i), the qth asynchronous signal of LD

users that impinges on the antenna array is represented by zq(i). The (JM × 1) vector zq(i) is given by

zq(i) = [zq,1(i) . . . zq,JM(i)]T , where zq,n(i) =
∑L−1

m=0 h
l
q,me

−jΘl
q,mxlq,m(nTc − τ lq,m − dlq).

The complex Gaussian noise vector is n(i) = [n1(i) . . . nJM(i)]T with zero mean and E[n(i)nH(i)] =

σ2I, (·)T and (·)H denote transpose and Hermitian transpose, respectively, the operator E[·] stands for

expected value, and η(i) is the intersymbol interference (ISI) vector. Indeed, the JM×1 vector of ISI η(i)

is constructed with linear combinations of the channel coefficients, the symbols from previous, current and

succeeding symbols and chips of the spreading codes of the HD users, similarly to zq(i). In this model,

the ISI span and contribution η[i] are functions of the processing gain Nh of HD users and the number
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of paths L. If 1 < L ≤ Nh then 3 symbols would interfere in total, the current one, the previous and the

successive symbols. In the case of Nh < L ≤ 2Nh then 5 symbols would interfere, the current one, the

2 previous and the 2 successive ones. In most practical CDMA systems, we have that 1 < L ≤ Nh and

then only 3 symbols are usually affected. The reader is referred to [1] for further details related to the

ISI and models. The UMTS channel models [31], which reveal that the channel usually affects at most

3 symbols (it typically spans a few chips) provides further details about the typical channels. In the case

of HD users it is substantially more significant due to the ratio L/Nh which is greater than L/Nl.

The main problem is how to detect the HD users with the minimum probability of error possible and

at reasonably complexity. The minimum probability of error detector was proposed by Verdu [2], [3] and

corresponds to a combinatorial problem with exponential complexity with the number of users. In what

follows, we seek the design of a high-performance detector with affordable complexity by proposing a

decision feedback structure with recurrent neural networks.

III. PROPOSED SPACE-TIME DECISION FEEDBACK NEURAL RECEIVER

The space-time decision feedback receiver structure, depicted in Fig. 2, applies a bank of ST-RAKE

detectors [25] to the observation vector r(i), followed by a neural MUD that employs dynamically driven

recurrent neural networks (RNNs) in the feedforward section for suppressing MAI and ISI and an FIR

linear filter in the feedback section for cancelling the associated users in the system. The RNNs [9] used

in the multiuser detector (MUD) are small structures, with feedback connections and where each artificial

neuron is connected to the others, capable of achieving superior performance to MLPs and RBFs [9].

In this context, the advantage of the neural MUD over linear ones is the use of non-linear mappings to

create decision boundaries for the detection of transmitted symbols.

We consider a one shot approach (detection of the symbols corresponding to one time instant) where

the Kh × 1 input vector u(i) = [u1(i) . . . uKh
(i)]T to the MUD is given by

u(i) = SHr(i), (5)

where S = [s̃a1 . . . s̃aKh
] and s̃ak is the user k effective spatial signature of the kth HD user that assumes
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the knowledge (or estimates) of the DOAs and channels or their estimates. The spatial signature s̃ak results

from the convolution of the original signature sequence shk with the channel and the time shifts resulting

from the antenna array, and can be represented as

s̃ak = [s̃Tk,1 . . . s̃Tk,p . . . s̃Tk,J ]
T , (6)

where s̃k,p = [s̃k,p,1 . . . s̃k,p,M ]T is the M × 1 signature at the pth antenna of the receiver.

Let us now describe in detail the schematic of the proposed space-time decision feedback neural receiver

depicted in Fig. 2. Specifically, the proposed receiver design is equivalent to processing the output u(i)

of the bank of ST-RAKE detectors with the RNN in the feedforward part of the receiver and the decision

feedback section. The Kh × 1 data vector u(i) is stacked with the Q× 1 vector of states of the RNN

xk(i− 1) = φ(WH
k (i)ξk(i)), (7)

where the matrix Wk(i) = [wk,1(i) . . . wk,j(i) . . . wk,Q(i)] with dimensions (Q+Kh)×Q and whose

Q columns wk,j(i), with j = 1, 2, . . . , Q have dimensions (Q+Kh)× 1 contain the coefficients of the

RNN receiver for user k and φ(.) is the activation function of the RNN and which is used to form the

(Q+Kh)× 1 vector

ξk(i) = [xT
k (i− 1) uT (i)]T , (8)

which is processed by the neural part of the receiver. The activation function is chosen as φ(·) = tanh(·)

in order to limit the amplitude range of the output signals of the network and to avoid numerical instability

in the recurrent structure [?]. In particular, the tanh(·) fits well in communications problems as it provides

naturally a soft estimate of symbols. In the case of DS-CDMA systems, it provides a soft estimate which

is fed back to the neural structure and helps it to inversely map the symbol estimate appropriately in the

presence of multiple-access interference and noise. The RNN in the feedforward section then processes

ξk(i) to yield the initial decisions as given by

b̂k(i) = v
(
Dxk(i)

)
= sgn

(
ℜ
[
Dxk(i)

])
+ ȷsgn

(
ℑ
[
Dxk(i)

])
= sgn

(
ℜ
[
Dφ(WH

k (i)ξk(i))
])

+ ȷsgn
(
ℑ
[
Dφ(WH

k (i)ξk(i))
])
,

(9)
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where v(·) denotes a slicing function that contains the operators ℜ(.) and ℑ(.) which are used to select

the real and imaginary parts, respectively, and then quantizes the output of each operator in order to detect

the QPSK symbols. The matrix D =
[
1 0 ... 0

]
is the 1×Q matrix that defines the number of outputs

of the network and and sgn(.) is the signum function. Since we are only interested in one symbol at each

time instant the vector D has this structure which means that only one output of the RNN is used to

yield the symbol estimate. The initial symbol estimates for each user (including the HD users and the

LD users which use an MMSE linear receiver [2]) are then stacked in order to form the K × 1 vector

with the initial decisions b̂(i) = [b̂1(i) b̂2(i) . . . b̂K(i)]. The estimate of the desired symbol for user k at

symbol i then becomes:

zk(i) = Dφ(WH
k (i)ξk(i))− fHk (i)b̂(i) , k = 1, 2, . . . , Kh (10)

where the K×1 vector fk (k = 1, 2, . . . , Kh) represents the feedback filters used to cancel the interference

contribution of the associated users. In particular, the feedback filter fk(i) of user k has a number of

non-zero coefficients corresponding to the available number of feedback connections for each type of

cancellation structure. The final detected QPSK symbol is:

b̂fk(i) = sgn
(
ℜ
[
zk(i)

])
+ ȷsgn

(
ℑ
[
zk(i)

])
= sgn

(
ℜ
[
Dφ(WH

k (i)ξk(i))− fHk (i)b̂(i)
])

+ ȷsgn
(
ℑ
[
Dφ(WH

k (i)ξk(i))− fHk (i)b̂(i)
]) (11)

Regarding the structure of the decision feedback (DF) section, the literature reports two basic types of

feedback, namely, the successive DF [7] and the parallel DF [27]. For successive DF (S-DF) [26] and

a system with an equal number of feedback entries and users K, we have the K × K matrix F(i) =

[f1(i) . . . fKh
(i)], which is formed with the filters for the K users, is strictly lower triangular, whereas

for parallel DF (P-DF) [27] F(i) is full and constrained to have zeros on the main diagonal in order

to avoid cancelling the desired symbols. The S-DF structure is optimal in the sense of that it achieves

the sum capacity of the synchronous CDMA channel with AWGN [26]. In addition, the S-DF scheme is

less affected by error propagation although it generally does not provide uniform performance over the

user population, which is a desirable characteristic for uplink scenarios. In this context, the P-DF system
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can offer uniform performance over the users but is it suffers from error propagation in low signal-to-

noise ratios (SNRs) and high bit error rates (BERs). In order to design the DF receivers and satisfy the

constraints of the associated structures, the designer must obtain the vector with initial decisions b̄(i) and

then perform to the adopted cancellation approach.

Unlike prior work, we focus on a scenario where there are Kh HD users, i.e., Kh feedback filters fk(i)

with dimensions K × 1 as the filters are also supposed to cancel the contribution of the LD users. Thus,

in this case the matrix of cancellation filters F(i) = [f1(i) f2(i) . . . fKh
(i)]T has dimensions K × Kh.

Due to its property of offering uniform performance over the user population and better performance as

compared to S-DF schemes [27], [28], [29], we will adopt P-DF schemes and introduce a modification for

including the LD users in the cancellation process. The feedback connections used and their associated

number of non-zero filter coefficients in fk are equal to K − 1 for the HD users. The resulting matrix

F(i) for the proposed neural receiver is full and constrained to have zeros on the diagonal from the first

row to the Khth row in order to avoid cancelling only the desired symbols of the HD users. The rest of

the matrix is full such that all LD are addressed by the feedback section.

IV. SET-MEMBERSHIP ADAPTIVE ALGORITHMS

Set-membership filtering (SMF) [15], [16] represents a class of recursive estimation algorithms that, on

the basis of a pre-determined error bound, seeks a set of parameters that yield bounded filter output errors.

These algorithms have been used in a variety of applications such as adaptive equalization [16] and multi-

access interference suppression [16]. The SMF algorithms are able to combat conflicting requirements

of fast convergence and low misadjustment by introducing a modification on the objective function. In

addition, these algorithms exhibit reduced complexity due to data-selective updates, which involve two

steps: a) information evaluation and b) update of parameter estimates. If the filter update does not occur

frequently and the information evaluation does not involve much computational complexity, the overall

complexity can be significantly reduced. The adaptive SMF algorithms usually achieve good convergence

and tracking performance due to an adaptive step size for each update, and reduced complexity resulting
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from data selective updating.

In this section, a novel efficient parameter estimator for neural structures based on the SMF framework

[15], [16] is described. Unlike prior work on FIR filters, we propose set-membership (SM) algorithms

for RNNs structures. In the SM framework, the receiver weight vectors wk,j(i) and fk(i) are designed to

achieve a specified bound on the magnitude of the estimation error ek(i) = bk(i)− (Dxk(i)− fHk (i)b̂(i)).

As a result of this constraint, the SM adaptive algorithm will only perform filter updates for certain data.

Let Θk(i) represent the set containing all wk,j(i) and fk(i) that yield an estimation error upper bounded

in magnitude by γ. Thus, we can write

Θk(i) =
∩

(u(i),bk(i))∈S

{wk,j,∈ C(Q+Kh), fk ∈ CK :| ek(i) |≤ γ} (12)

where S is the set of all possible data pairs (u(i), bk(i)) and the set Θk(i) is referred to as the feasibility

set and any point in it is a valid estimate zk(i). Since it is not practical to predict all data pairs, adaptive

methods work with the membership sets ψk,i =
∩i

m=1Hk,m provided by the observations, where Hk,m =

{wk,j,∈ C(Q+Kh), fk ∈ CK : |bk(m) − zk(m)| ≤ γ}. In order to derive an SM adaptive algorithm using

point estimates for the proposed DF receiver structure, we consider the cost function

L(Wk(i), fk(i)) = E[|bk(i)− (Dxk(i)− fHk (i)b̂(i))|2] (13)

subject to |ek(i)| ≤ γ, where ek(i) = bk(i)−(Dxk(i)−fHk (i)b̂(i)). A gradient algorithm can be developed

by computing the gradient terms with respect to wk,j and fk, and using their instantaneous values. Firstly,

we consider the first partial derivative of L(Wk(i), fk(i)) with respect to the parameter vector wk,j(i)

with dimension (Q+Kh)× 1, which forms the matrix Wk

∂L(Wk(i), fk(i))

∂w∗
k,j(i)

=

(
∂ek(i)

∂w∗
k,j(i)

)
e∗k(i) = −D

(
∂xk(i)

∂w∗
k,j(i)

)
e∗k(i)

= −DΛk,j(i)e
∗
k(i)

(14)

where the Kh × (Q + Kh) matrix Λk,j(i) contains the partial derivatives of the state vector xk(i) with

respect to wk,j(i). To obtain the expressions for updating the matrix Λk,j(i), we consider the update

equations for the state vector xk(i) given through (7) and (8). Using the chain rule of calculus in (8),
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we obtain a recursion that describes the dynamics of the learning process of the neural section of the

receiver:

Λk,j(i+ 1) = Φk(i)
(
W1:K

k (i)Λk,j(i) +Uk,j(i)
)
, j = 1, . . . , K (15)

where the Q × Q matrix W1:K
k denotes the submatrix of Wk formed by the first Kh rows of Wk, the

Q × Q matrix Φk(i) for user k has a diagonal structure where the elements correspond to the partial

derivative of the activation function φ(.) with respect to the argument wH
k,j(i)ξk(i) as given by

Φk(i) = diag
(
φ′(wH

k,1(i)ξk(i)), . . . , φ
′(wH

k,K(i)ξk(i))
)

(16)

where the Kh × (Q+Kh) matrix Uk,j(i) = [0T ξTk (i) 0
T ]T has all the rows with zero elements, except

for the j-th row that is equal to the vector ξk(i). By using a gradient optimization that uses the rules

wk,j(i + 1) = wk,j(i) − µn
∂L(Wk(i),fk(i))

∂w∗
k,j(i)

, fk(i + 1) = fk(i) − µf
∂L(Wk(i),fk(i))

∂f∗k (i)
and substituting (14) and

∂C(Wk(i),fk(i))
∂f∗k (i)

= e∗k(i)b̂(i), we obtain

wk,j(i+ 1) = wk,j(i) + µnDΛk,j(i)e
∗
k(i) (17)

fk(i+ 1) = fk(i)− µf b̂(i) (18)

In order to ensure the constraint on the error bound (|ek(i)| ≤ γ), we substitute (17) into (13) and then

we make the terms equal to γ. We proceed with the feedback filter fk(i) in the same way, which yields

the algorithms

wk,j(i+ 1) =


wk,j(i) +

(1− γ
|ek(i)| )

||Λk,j(i)||2
DΛk,j(i)e

∗
k(i) if |ek(i)| > γ

wk,j(i) otherwise
(19)

fk(i+ 1) =


fk(i)−

(1− γ
|ek(i)| )

(b̂H(i)b(i))
e∗k(i)b̂(i) if |ek(i)| > γ

fk(i) otherwise
(20)

where µn = (1− γ
|ek(i)|

)/||Λk,j(i)||2 and µf = (1− γ
|ek(i)|

)/(b̂H(i)b(i)) are the new normalized step sizes

of the algorithms. The novel adaptive technique is called the SM normalized real time recurrent learning

(SM-NRTRL) algorithm. It introduces a powerful variable step size and discerning update rule.
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V. SIMULATION EXPERIMENTS

In this section we assess the performance of the proposed space-time neural receivers and SM algorithms

in terms of the bit error rate (BER). We compare the proposed neural MUD (NMUD) and DF neural

MUD (DF-NMUD) receivers with the RAKE [25], the linear MUD (L-MUD) and the DF-MUD with

J = 1 and their space-time versions with J = 2, 3 antenna elements. We also evaluate the convergence

performance of the adaptive estimation algorithms, i.e., the NLMS, the NRTRL [9], the SM-NLMS [15]

and the proposed SM-NRTRL. For the NMUD we make fk = 0 in the structure and algorithms of Sections

III and IV.

The DS-CDMA system employs, QPSK modulation, Gold sequences of length N = 7 or random

sequences of length N = 8 for the HD users and Gold sequences of length Nl = 31 for the LD users

and the number of HD and LD users is equal (Kl = Kh) in all experiments. We adopted an identical

ratio of LD to HD users for simplicity. In a practical system, it is expected that the number of LD users

significantly exceed the HD ones since the LD users correspond to voice users (major part of users and

market), whereas the HD users correspond to multimedia and data users. Another issue is that since a

number of DS-CDMA systems in use include higher-order modulation schemes, besides QPSK, it should

be noted that the proposed system can be modified to handle higher-order modulation schemes such as

QAM-16 and QAM-64. In this case, it would be necessary to modify the detection rule in the receiver.

Specifically, the slicer would have to take into account the different levels of the signal constellation. The

LD users also operate asynchronously with single-antenna MMSE linear receivers [25] and a power level

3 dB below that of HD users. The channels experienced by different users are i.i.d. whose coefficients

for each user k (k = 1, . . . , K) are hk,l(i) = plαk,l(i), where pl are the gains (or average powers) of

the channel paths (power delay profile) and αk,l(i) (l = 0, 1, . . . , L − 1) are complex Gaussian random

sequences obtained by passing complex white Gaussian noise through a filter with approximate transfer

function c/
√

1− (f/fd)2 where c is a normalization constant, fd = v/λ is the maximum Doppler shift, λ

is the wavelength of the carrier frequency, and v is the speed of the mobile [30]. The channel powers are

normalized so that
∑Lp

l=1 p
2
l = 1. This procedure corresponds to the generation of independent sequences
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of correlated unit power Rayleigh random variables (E[|α2
k,l(i)|] = 1). We show the results in terms of

the normalized Doppler frequency fdT (cycles/symbol) and use three-path channels with relative average

powers pl given by 0, −3 and −6 dB, where in each run the spacing between paths is obtained from a

discrete uniform random variable (d.u.r.v.) between 1 and 3 chips.

The asynchronism τk in chips is taken from a d.u.r.v between 1 and the respective processing gain

of the class of user (HD or LD). The parameters of the algorithms are optimized and the system has

perfect power control between users of each class (HD or LD). The activation function φ(.) for the neural

receivers is the hyperbolic tangent, the number of states Q of the RNNs is set to 1, the DOAs ϕk,m are

uniformly distributed in (−π/3, π/3) for all simulations and the NLMS is used to estimate the effective

spatial signature of the receiver structure. Experiments are averaged over 200 independent runs and the

parameter γ was chosen as
√
3.5σ2 for the neural MUDs and

√
5σ2 for the other detectors. The proposed

and existing algorithms are all initialized with parameter vectors with zero elements in order to provide a

fair comparison. The BER performance shown in the results refers to the average BER amongst the Kh

HD users.

In Figs. 3 and 4 we show the BER convergence performance of the analyzed algorithms and linear and

DF receivers, respectively. We also include the Kalman algorithm of [14] with J = 3 and the proposed

neural structure in the comparison as an upper bound. The curves show that data-selective algorithms

outperform the conventional adaptive techniques both in convergence speed and steady-state performance,

while they only perform filter updates for a fraction of the overall symbols. The DF schemes, shown in

Fig. 4, and in particular the DF-NMUD outperform the schemes without DF , shown in Fig. 3, and as the

number of antenna elements J is increased so is the performance. The proposed SM-NRTRL algorithm for

the neural structure outperforms the NRTRL and has a performance very close to the Kalman technique

of [14], which has much higher complexity (O(K3
h)).

In terms of complexity, the algorithms require O(QKh) for training the neural structures and O(K)

for training the linear filters but the SM-NRTRL neural algorithms exhibit better performance and lower

UR. Indeed, the update rate (UR) of the SM algorithms is shown in Table I at Eb/N0 = 10dB and
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fdT = 0.0001, where it is shown the advantage in terms of UR of the neural approach combined with SM

framework. The UR depends on fdT and γ, and we verified that, for an extensive set of scenarios, the

SM-NRTRL has the ability to consistently operate at lower UR than existing algorithms. The complexity

is mainly dictated by the number of states Q of the neural network and the number of HD users Kh.

The number of antenna elements J increases the complexity of the space-time receivers in an identical

way for both neural and non-neural schemes because the in the proposed structure the signal processing

either via neural structures or linear ones is performed after the bank of ST-RAKE receivers. In this case,

we used NLMS algorithms to estimate the effective spatial signatures of the users, which despread the

signals prior to the processing of the receiver.

The BER performance of SM-adaptive algorithms and DF receivers is shown in Fig. 5. The receivers are

adjusted with 200 symbols during the training period, then switch to decision-directed mode and process

2000 data symbols. The results show that the proposed DF-NMUD achieves the best BER performance,

followed by the DF-MUD with linear filters (DF-MUD), and the RAKE receivers.

In the last experiment, shown in Fig. 6, we consider randomly generated sequences with N = 8 and

receivers with single antennas and space-time receivers with J = 3 antenna elements in order to evaluate

a situation that may arise in a practical standard, i.e., the 3G UMTS system. In this case, the channels

are modeled by the UMTS Vehicular A channel model [31] with maximum Doppler frequency fD = 100

Hz with a carrier frequency fc = 2 GHz. The receivers are adjusted with 200 symbols during the training

period, then switch to decision-directed mode and process 2000 data symbols. The curves show that

the proposed DF-NMUD achieves the best BER performance, followed by the remaining techniques,

corroborating the results obtained for the previous experiments.

VI. CONCLUSIONS AND FUTURE WORK

A space-time adaptive DF neural receiver for high rate users in DS-CDMA systems was proposed for

joint equalization and multiuser detection. In order to estimate the parameters of the proposed receiver,

we developed a low complexity data-selective algorithm was developed based on the concept of Set-
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Membership filtering. Numerical results have shown that the proposed neural structure and algorithms

considerably outperform existing methods. For future work, the proposed scheme and algorithms can

also be considered and applied to other communications systems such as MIMO systems. Detectors with

attractive trade-off between performance and complexity such as the proposed one are of central importance

in MIMO systems. This would require a description of a discrete-time model of MIMO systems and a

formulation of the problem involving the application of the proposed DF neural structure for extracting

the desired signals embedded in interference. Future work may also involve the investigation of novel

adaptive estimation algorithms using the set-membership framework. Algorithms with faster convergence

rate than the one proposed here such as least squares and those with data reuse may be of interest for

the estimation of parameters in a larger neural structure, as well as, the formulation of set-membership

techniques with automatic adjustment of the bound.
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TABLE I

Detectors L-MUD NMUD DF-MUD DF-NMUD

J=1 25.4% 18.2% 24.6% 15.7%

J=2 24.5% 17.1% 23.1% 14.3%

J=3 23.9% 16.8% 21.5% 13.8%
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Captions:

Fig. 1: Block diagram of the space-time DS-CDMA system model.

Fig. 2: Block diagram of the proposed space-time decision feedback neural receiver.

Fig. 3: BER convergence performance of data-seletive and conventional (dash-dotted lines) algorithms

for linear receivers.

Fig. 4: BER convergence performance of data-seletive and conventional (dash-dotted lines) algorithms

for DF receivers.

Table 1: Update Rate of SM algorithms at Eb/N0 = 10dB and fdT = 0.0001.

Fig. 5: BER performance of DF receivers versus (a) Eb/N0 and (b) number of HD users (Kh).

Fig. 6: BER performance of DF receivers versus (a) Eb/N0 and (b) number of HD users (Kh) for a

UMTS channel model.


