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Abstract—In this paper, we propose a novel adaptive reduced-
rank strategy for very large multiuser multi-input multi-output
(MIMO) systems. The proposed reduced-rank scheme is based
on the concept of joint iterative optimization (JIO) of filters
according to the minimization of the bit error rate (BER)
cost function. The proposed optimization technique adjusts the
weights of a projection matrix and a reduced-rank filter jointly.
We develop stochastic gradient (SG) algorithms for their adaptive
implementation and introduce a novel automatic rank selection
method based on the BER criterion. Simulation results for
multiuser MIMO systems show that the proposed adaptive
algorithms significantly outperform existing schemes.
1

Index Terms- Multiuser MIMO systems, massive MIMO,
reduced-rank methods, adaptive algorithms, BER cost function.

I. INTRODUCTION

Wireless communication research has recently focused on
multi-input multi-output (MIMO) systems in order to exploit

the increased capacity offered by the use of multiple an-

tennas, and improve the quality and reliability of wireless
links [1]. In MIMO systems, two configurations can be

employed, namely, diversity and spatial multiplexing, which

exploit spatial diversity to combat fading and increase the data
rates by transmitting independent data streams, respectively.

In particular, spatial multiplexing can be used for multiuser

MIMO systems to transmit multiple data streams that can be
separated using signal processing techniques at the receiver.

More recently, multiuser detection has been considered in

conjunction with MIMO techniques, which is widely believed
to play an important role in future communication systems [2],

[3], [4]. A recent trend has been introduced with the concept

of massive MIMO [5] and the investigation of algorithms
for very large MIMO systems [6], [7], which present key

technical challenges for designers. Central problems in very
large multiuser MIMO systems are the tasks of detection

and parameter estimation that are required for interference

suppression and must deal with a large number of parameters.
In this context, reduced-rank signal processing is a very

promising technique due to its ability to deal with a large
number of parameters. It has received significant attention in

the past several years, since it provides faster convergence
speed, better tracking performance and an increased robustness

against interference as compared to conventional schemes

operating with a large number of parameters. A number of
reduced-rank techniques have been developed to design the

subspace projection matrix and the reduced-rank filter [8]-[15].

Among the first schemes are eigendecomposition-based (EIG)
algorithms [8], [9]. The multistage Wiener filter (MWF) has
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been investigated in [10] and [11], whereas the auxiliary vector

filtering (AVF) algorithm has been considered in [12]. EIG,
MWF and AVF have faster convergence speed with a much

smaller filter size, but their computational complexity is very

high. A strategy based on the joint and iterative optimization
(JIO) of a subspace projection matrix and a reduced-rank

filter has been reported in [13], [14], whereas algorithms with

switching mechanisms have been considered in [15] for DS-
CDMA systems.

Most of the contributions to date are either based on the
minimization of the mean square error (MSE) and/or the

minimum variance criteria [8]-[15], which are not the most

appropriate metric from a performance viewpoint in digital
communications. Design approaches that can minimize the bit

error rate (BER) have been reported in [16], [17], [18] and are
termed adaptive minimum bit error rate (MBER) techniques.

The work in [18] appears to be the first approach to combine

a reduced-rank algorithm with the BER criterion. However,
the scheme is a hybrid between an EIG or an MWF approach,

and a BER scheme in which only the reduced-rank filter is

adjusted in an MBER fashion.
In this paper, we propose adaptive reduced-rank techniques

based on a novel JIO strategy that minimizes the BER cost
function for very large multiuser MIMO systems. The pro-

posed strategy adjusts the weights of both the rank-reduction

matrix and the reduced-rank filter jointly in order to minimize
the BER. We develop stochastic gradient (SG) algorithms for

their adaptive implementation and present an automatic rank

selection method with the BER as a metric. Simulation results
for large multiuser MIMO systems show that the proposed

algorithms significantly outperform existing schemes.
The paper is structured as follows. Section II briefly de-

scribes the multiuser MIMO system model. The derivation
of the MBER reduced-rank algorithm is described in section

III. The complexity analysis of the proposed algorithm and

the automatic rank selection scheme are introduced in section
IV. The simulation results are presented in section V. Finally,

section VI draws the conclusions.

II. SYSTEM MODEL

Let us consider the uplink of an uncoded synchronous

multiuser MIMO system with K users and one base station

(BS), where each user is equipped with a single antenna and
the BS is with M uncorrelated receive antennas, K ≤ M . We

assume that the channel is a MIMO time-varying flat fading

channel. The M -dimensional received vector is given by

r(i) =

K
∑

k=1

Akhk(i)bk(i) + n(i), (1)



where bk(i) ∈ {±1} is the i-th symbol for user k, and the
amplitude of user k is Ak, k = 1, . . . ,K . The M × 1 vector

hk(i) is the channel vector of user k, which is given by

hk(i) = [hk,1(i) . . . hk,M (i)]T , (2)

whose elements hk,f (i), f = 1, . . . ,M , are independent

and identically distributed complex Gaussian variables with

zero mean and unit variance, n(i) = [n1(i) . . . nM (i)]T

is the complex Gaussian noise vector with zero mean and

E[n(i)nH(i)] = σ2
I, where σ2 is the noise variance, (.)T and

(.)H denote transpose and Hermitian transpose, respectively.

III. DESIGN OF MBER REDUCED-RANK SCHEMES

In this section, we detail the design of reduced-rank schemes

which minimize the BER. In a reduced-rank algorithm, an
M ×D projection matrix SD is applied to the received data

to extract the most important information of the processed data

by performing dimensionality reduction, where 1 ≤ D ≤ M .
A D × 1 projected received vector is obtained as follows

r̄(i) = S
H
Dr(i), (3)

where it is the input to a D×1 filter w̄k = [w̄1, w̄2, . . . , w̄D]T .
The filter output is given by

x̄k(i) = w̄
H
k r̄(i) = w̄

H
k S

H
Dr(i). (4)

The estimated symbol of user k is given by

b̂k(i) = sign{ℜ[w̄H
k r̄(i)]}, (5)

where the operator ℜ[.] retains the real part of the argument
and sign{.} is the signum function. The probability of error

for user k is given by

Pe = P (x̃k < 0) =

∫ 0

−∞

f(x̃k)dx̃k

= Q

(

sign{bk(i)}ℜ[x̄k(i)]

ρ(w̄H
k SH

DSDw̄k)
1
2

)

,

(6)

where x̃k = sign{bk(i)}ℜ[x̄k(i)], f(x̃k) is the single point
kernel density estimate [16] which is given by

f(x̃k) =
1

ρ
√

2πw̄H
k SH

DSDw̄k

× exp

(−(x̃k − sign{bk(i)}ℜ[x̄k(i)])
2

2w̄H
k SH

DSDw̄kρ2

)

,

(7)

where ρ is the radius parameter of the kernel density estimate,

Q(.) is the Gaussian error function. The parameters of SD

and w̄k are designed to minimize the probability of error. By

taking the gradient of (6) with respect to w̄
∗
k and after further

mathematical manipulations we obtain

∂Pe

∂w̄∗
k

=

− exp

(

−|ℜ[x̄k(i)]|
2

2ρ2w̄H

k
SH

D
SDw̄k

)

√
2π

×
∂

(

sign{bk(i)}ℜ[x̄k(i)]

ρ(w̄H

k
SH

D
SDw̄k)

1
2

)

∂w̄∗
k

=

− exp

(

−|ℜ[x̄k(i)]|
2

2ρ2w̄H

k
SH

D
SDw̄k

)

sign{bk(i)}

2
√
2πρ

×
(

S
H
Dr

(w̄H
k SH

DSDw̄k)
1
2

− ℜ[x̄k(i)]S
H
DSDw̄k

(w̄H
k SH

DSDw̄k)
3
2

)

.

(8)

By taking the gradient of (6) with respect to S
∗
D and following

the same approach we have

∂Pe

∂S∗
D

=

− exp

(

−|ℜ[x̄k(i)]|
2

2ρ2w̄H

k
SH

D
SDw̄k

)

√
2π

×
∂

(

sign{bk(i)}ℜ[x̄k(i)]

ρ(w̄H

k
SH

D
SDw̄k)

1
2

)

∂S∗
D

=

− exp

(

−|ℜ[x̄k(i)]|
2

2ρ2w̄H

k
SH

D
SDw̄k

)

sign{bk(i)}

2
√
2πρ

×
(

rw̄
H
k

(w̄H
k SH

DSDw̄k)
1
2

− SDw̄kw̄
H
k ℜ[x̄k(i)]

(w̄H
k SH

DSDw̄k)
3
2

)

.

(9)

IV. PROPOSED MBER ADAPTIVE ALGORITHMS

In this section, we firstly describe the proposed scheme and

MBER adaptive SG algorithms to adjust the weights of SD(i)
and w̄(i) based on the minimization of the BER criterion.

Then, a method for automatically selecting the rank of the

algorithm using the BER criterion is presented.
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Fig. 1. Structure of the proposed reduced-rank scheme

A. Adaptive Estimation of Projection Matrix and Receiver

The proposed scheme is depicted in Fig. 1, the projection
matrix SD(i) and the reduced-rank filter w̄k(i) are jointly

optimized according to the BER criterion. The algorithm has
been devised to start its operation in the training (TR) mode,

and then to switch to the decision-directed (DD) mode. The

proposed SG algorithm is obtained by substituting the gradient
terms (8) and (9) in the expressions w̄k(i + 1) = w̄k(i) −
µw

∂Pe

∂w̄∗

k

and SD(i+1) = SD(i)−µSD

∂Pe

∂S∗

D

[19] subject to the

constraint of w̄H
k (i)SH

D(i)SD(i)w̄k(i) = 1. Based on [16], we

can see that, with respect to the product SDw̄k, there are only
global minimum solutions, and all the solutions form a half

hyperplane. In this work, we pick one of the MBER solutions



for SDw̄k, which is with the unit length. At each time instant,
the weights of the two quantities are updated in an alternating

way by using the following equations

w̄k(i + 1) = w̄k(i) + µw

exp

(

−|ℜ[x̄k(i)]|
2

2ρ2

)

sign{bk(i)}

2
√
2πρ

×
(

S
H
D(i)r(i)−ℜ[x̄k(i)]S

H
D (i)SD(i)w̄k(i)

)

(10)

SD(i+ 1) = SD(i) + µSD

exp

(

−|ℜ[x̄k(i)]|
2

2ρ2

)

sign{bk(i)}

2
√
2πρ

×
(

r(i)w̄H
k (i)− SD(i)w̄k(i)w̄

H
k (i)ℜ[x̄k(i)]

)

(11)

where µw and µSD
are the step-size values. Expressions

(10) and (11) need initial values, w̄k(0) and SD(0), and we

scale the reduced-rank filter by w̄k = w̄k√
w̄H

k
SH

D
SDw̄k

at each

iteration. The scaling has an equivalent performance to using a

constrained optimization with Lagrange multipliers although it

is computationally simpler. The proposed adaptive JIO-MBER
algorithm is summarized in table I.

TABLE I
PROPOSED ADAPTIVE JIO-MBER ALGORITHMS

1 Initialize w̄k(0) and SD(0).
2 Set step-size values µw and µSD

3 for each time instant i = 0, 1, · · · do
4 Compute w̄k(i+ 1) and SD(i+ 1) using (10) and (11).

5 Scale the w̄k using w̄k = w̄k
√

w̄H

k
SH

D
SDw̄k

.

6 Obtain w̄k(i+ 1) and SD(i+ 1) for the next time instant.

The joint optimization of w̄k and SD has been shown to
converge to the global minimum when the MSE is employed

as the cost function [14]. The proposed scheme promotes an
iterative exchange of information between the transformation

matrix and the reduced-rank filter, which leads to improved

convergence and tracking performance. However, when the
BER is used as the cost function, there are local minima

associated with the optimization.

B. Computational Complexity of Algorithms

We describe the computational complexity of the proposed

JIO-MBER adaptive algorithm in multiuser MIMO systems.
In Table II, we compute the number of additions and mul-

tiplications to compare the complexity of the proposed JIO-

MBER algorithm with the conventional adaptive reduced-rank
algorithms, the adaptive least mean squares (LMS) full-rank

algorithm based on the MSE criterion [19] and the SG full-

rank algorithm based on the BER criterion [16]. Note that
the MWF-MBER algorithm corresponds to the use of the

procedure in [10] to construct SD(i) and (10) to compute
w̄k(i). In particular, for a configuration with M = 32 and

D = 6, the number of multiplications for the MWF-MBER

and the proposed JIO-MBER algorithms are 7836 and 1225,
respectively. The number of additions for them are 5517 and

933, respectively. Compared to the MWF-MBER algorithm,

the JIO-MBER algorithm reduces the computational complex-
ity significantly.

TABLE II
COMPUTATIONAL COMPLEXITY OF ALGORITHMS.

Number of operations per symbol
Algorithm Multiplications Additions

Full-Rank-LMS 2M + 1 2M
Full-Rank-MBER 4M + 1 4M − 1
MWF-LMS [11] DM

2
−M

2
DM

2
−M

2

+2DM + 4D + 1 +3D − 2
EIG [9] O(M3) O(M3)

JIO-LMS [13] 3DM +M 2DM +M

+3D + 6 +4D − 2
MWF-MBER [18] (D + 1)M2 (D − 1)M2

+(3D + 1)M + 3D +(2D − 1)M
+M + 10 +2D +M + 1

JIO-MBER 6MD + 5D 5MD +D

+M + 11 −M − 1

C. Automatic Rank Selection

The performance of reduced-rank algorithms depends on

the rank D, which motivates automatic rank selection schemes

to choose the best rank at each time instant [10], [14], [15].
Unlike prior methods for rank selection, we develop a rank

adaptation algorithm based on the probability of error, which

is given by

PD(i) = Q

(

sign{bk(i)}ℜ[x̄D
k (i)]

ρ

)

(12)

where the receiver is subject to w̄
H
k S

H
DSDw̄k = 1. For

each time instant, we adapt a reduced-rank filter ˜̄wk(i) and

a projection matrix S̃D(i) with the maximum allowed rank
Dmax, which can be expressed as

˜̄wk(i) = [ ˜̄w1(i), . . . , ˜̄wDmin
(i), . . . , ˜̄wDmax

(i)]T (13)

S̃D(i) =







s̃1,1(i) . . . s̃1,Dmin
(i) . . . s̃1,Dmax

(i)
...

...
...

...
...

s̃M,1(i) . . . s̃M,Dmin
(i) . . . s̃M,Dmax

(i)







(14)

where Dmin and Dmax are the minimum and maximum ranks
allowed for the reduced-rank filter, respectively. For each

symbol, we test the value of rank D within the range, namely,

Dmin ≤ D ≤ Dmax. For each tested rank, we substitute the

filter ˜̄w

′

k(i) = [ ˜̄w1(i), . . . , ˜̄wD(i)]T and the matrix

S̃
′

D(i) =







s̃1,1(i) . . . s̃1,D(i)
...

...
...

s̃M,1(i) . . . s̃M,D(i)






(15)

into (12) to obtain the probability of error PD(i). The optimum
rank can be selected as

Dopt(i) = arg min
D∈{Dmin,...,Dmax}

PD(i). (16)



The proposed MBER automatic rank selection requires the
operation with Dmax to calculate

x̄D
k (i) = w̄

H
k (

Dmin
∑

d=1

s
H
d r(i)vd + . . .+ s

H
Dopt

r(i)vDopt

+

Dmax
∑

d=Dopt+1

s
H
d r(i)vd),

(17)

where vd is a zero vector with a one in the dth position and
sd = [s̃1,d(i), . . . , s̃M,d(i)]

T . A simple search over the values

of x̄D
k (i) and the selection of the terms corresponding to Dopt

and PDopt
(i) are performed.

V. SIMULATIONS

In this section, we evaluate the performance of the proposed
JIO-MBER reduced-rank algorithms and compare them with

existing full-rank and reduced-rank algorithms. Monte-carlo

simulations are conducted to verify the effectiveness of the
JIO-MBER adaptive reduced-rank SG algorithms. The number

of receive antennas at the BS is M = 32. The channel
coefficient hk,f (i) is computed according to the Jakes model

[20]. We optimized the parameters of the JIO-MBER adaptive

reduced-rank SG algorithms with step sizes µw = 0.01
and µSD

= 0.025. The step sizes for LMS adaptive full

rank, SG adaptive MBER full rank and the conventional

adaptive reduced-rank techniques are 0.085, 0.05 and 0.035,
respectively. The initial full rank and reduced-rank filters are

all zero vectors. The initial projection matrix is given by

SD(0) = [ID,0D×(M−D)]
T . The algorithms process 250

symbols in TR and 1500 symbols in DD. We set ρ = 2σ.
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Fig. 2. BER performance versus the number of received symbols for the JIO-
MBER reduced-rank algorithms and the conventional schemes. (Dmin = 3,
Dmax = 20, K = 7)

Figs. 2 and 3 show the BER performance of the desired user

versus the number of received symbols for the JIO-MBER
adaptive SG algorithms and the conventional schemes. We

set the rank D = 8 for the reduced-rank schemes, and the

normalized Doppler frequency is fdTs = 1 × 10−5. We use
15 dB for the input signal to noise ratio (SNR). From Fig. 2

and 3, we can see that the proposed JIO-MBER SG algorithm
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Fig. 3. BER performance versus the number of received symbols for the JIO-
MBER reduced-rank algorithms and the conventional schemes. (Dmin = 3,
Dmax = 20, K = 17)

with the automatic rank selection mechanism achieves the
best performance. Although the full-rank MBER SG algorithm

has a better performance compared to the proposed JIO-
MBER SG algorithm with D = 8 for a system with a low

load, the proposed JIO-MBER SG algorithm with D = 8
outperforms the full-rank MBER SG algorithm for a highly-
loaded system. We also can see that the JIO-MBER reduced-

rank algorithms converge much faster than the conventional

reduced-rank algorithms, and the MBER eigen-decomposition
reduced-rank method with D = 8 does not work well in

time-varying MIMO fading channels. For the group of JIO-

MBER adaptive algorithms, the auto-rank selection algorithms
outperform the fixed rank algorithms.
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Fig. 4. BER performance versus SNR for the JIO-MBER reduced-rank
algorithms and the conventional schemes. 1500 symbols are transmitted and
250 symbols in TR. (Dmin = 3, Dmax = 20, K = 10)

Figs. 4 and 5 illustrate the BER performance of the desired

user versus SNR and number of users K , where we set
fdTs = 1 × 10−5 and D = 8. We can see that the best per-

formance is achieved by the proposed JIO-MBER algorithm
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Fig. 5. BER performance versus number of users for the JIO-MBER reduced-
rank algorithms and the conventional schemes. 1500 symbols are transmitted
and 250 symbols in TR. (Dmin = 3, Dmax = 20, SNR = 15 dB)

with the automatic rank selection mechanism. The proposed
JIO-MBER algorithm with D = 8 outperforms the MWF-

MBER reduced-rank algorithm. For the low-SNR region and

the high-load case, the proposed JIO-MBER algorithm with
D = 8 outperforms the full-rank MBER SG algorithm. In

particular, the JIO-MBER algorithm using the automatic rank

selection mechanism can save up to over 5dB and support up
to six more users in comparison with the full rank MBER SG

algorithm, at the BER level of 6× 10−3.
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Fig. 6. BER performance versus the (cycles/symbol) for the JIO-MBER
reduced-rank algorithms and the conventional schemes. 1500 symbols are
transmitted and 250 symbols in TR. (Dmin = 3, Dmax = 20, SNR = 15
dB, K = 17)

We show the BER performance of the analyzed algorithms

as the fading rate of the channels vary. In this experiment, we
set the number of users K = 17 and SNR = 15dB. In Fig. 6,

we can see that, as the fading rate increases the performance
gets worse, and the proposed JIO-MBER algorithm with the

automatic rank selection mechanism achieves the best perfor-

mance, followed by the proposed JIO-MBER algorithm with
D = 8, the full-rank MBER SG algorithm, the conventional

MWF-MBER algorithm and the full-rank LMS algorithm. It

shows the ability of the proposed JIO-MBER algorithms to
deal with dynamic channels.

VI. CONCLUSIONS

In this paper, we have proposed a novel adaptive MBER

reduced-rank scheme based on joint iterative optimization of
filters for multiuser MIMO systems. We have developed SG-

based algorithms for the adaptive estimation of the reduced-
rank filter and the projection matrix, and proposed an auto-

matic rank selection scheme using the BER as a criterion. The

simulation results have shown that the proposed JIO-MBER
adaptive reduced-rank algorithms significantly outperform the

existing full-rank and reduced-rank algorithms at a low cost.

REFERENCES

[1] D. Tse and P. Viswanath, Fundamentals of Wireless Communication,
Cambridge University Press, 2005.

[2] J. H. Choi, H. J, Yu and Lee, Y. H., Adaptive MIMO decision feedback
equalization for receivers with time-varying channels, IEEE Trans. Signal
Process., vol. 53, no. 11, pp. 4295-4303, Nov., 2005.

[3] A. Rontogiannis, V. Kekatos, and K. Berberidis,” A Square-Root Adaptive
V-BLAST Algorithm for Fast Time-Varying MIMO Channels,” IEEE
Signal Processing Letters, Vol. 13, No. 5, pp. 265-268, May 2006.

[4] P. Li, R. C. de Lamare and R. Fa, Multiple Feedback Successive
Interference Cancellation Detection for Multiuser MIMO Systems, IEEE
Trans. on Wir. Communications, vol.10, no.8, pp.2434-2439, August 2011.

[5] T. L. Marzetta, “Noncooperative Cellular Wireless with Unlimited Num-
bers of Base Station Antennas”, IEEE Trans. Wireless Communications,
vol. 9, no. 11, pp. 3590-3600, Nov. 2010.

[6] P. Li, R.D. Murch, “Multiple output selection-LAS algorithm in large
MIMO systems,” IEEE Communications Letters, vol.14, no.5, pp. 399-
401, May 2010.

[7] Saif K.Mohammed, Ahmed Zaki, A. Chockalingam, and B. Sundar
Rajan, Highrate space-time coded large-MIMO systems: Low-complexity
detection and channel estimation, IEEE Journal on Selected Topics in
Signal Processing (JSTSP), vol. 3, no. 6, pp. 958-974, December 2009.

[8] A. M. Haimovich and Y. Bar-Ness,“An eigenanalysis interference can-
celer,” in IEEE Trans. Sig. Proc., vol. 39, no. 1, pp. 76-84, Jan. 1991.

[9] J. S. Goldstein and I. S. Reed,“Reduced-rank adaptive filtering,” in IEEE
Trans. Signal Process., vol. 45, no. 2, pp. 492-496, Feb. 1997.

[10] J. S. Goldstein, I. S. Reed, and L. L. Scharf, “A multistage representation
of the Wiener filter based on orthogonal projections,” in IEEE Trans. Inf.
Theory, vol. 44, no. 11, pp. 2943-2959, Nov. 1998.

[11] M. L. Honig and J. S. Goldstein,“Adaptive reduced-rank interference
suppression based on the multistage Wiener filter,” in IEEE Trans.
Commun., vol. 50, no. 6, pp. 986-994, Jun. 2002.

[12] D. A. Pados, G. N. Karystinos, “An iterative algorithm for the compu-
tation of the MVDR filter,” in IEEE Trans. Sig. Proc., vol. 49, No. 2,
February, 2001.

[13] R. C. de Lamare and R. Sampaio-Neto, “Reduced-Rank Adaptive
Filtering Based on Joint Iterative Optimization of Adaptive Filters”, in
IEEE Sig. Proc. Letters, Vol. 14, no. 12, December 2007.

[14] R. C. de Lamare and R. Sampaio-Neto, “Reduced-Rank Space-Time
Adaptive Interference Suppression With Joint Iterative Least Squares Al-
gorithms for Spread-Spectrum Systems,” IEEE Transactions on Vehicular
Technology, vol.59, no.3, March 2010, pp.1217-1228.

[15] R. C. de Lamare and R. Sampaio-Neto, “Adaptive Reduced-Rank
Processing Based on Joint and Iterative Interpolation, Decimation, and
Filtering,” in IEEE Trans. Sig. Proc., vol. 57, no. 7, July 2009, pp. 2503
- 2514.

[16] S. Chen, A. K. Samingan, B. Mulgrew, and L. Hanzo, “Adaptive
Minimum-BER Linear Multiuser Detection for DS-CDMA Signals in
Multipath Channels”, in IEEE Trans. Sig. Proc., vol. 49, no. 6, pp. 1240-
1247, Jun. 2001.

[17] R. C. de Lamare, R. Sampaio-Neto, “Adaptive MBER decision feedback
multiuser receivers in frequency selective fading channels”, in IEEE
Communications Letters, vol. 7, no. 2, Feb. 2003, pp. 73 - 75.

[18] Q. Z. Ahmed, L-L. Yang, S. Chen, “Reduced-Rank Adaptive Least Bit-
Error-Rate Detection in Hybrid Direct-Sequence Time-Hopping Ultrawide
Bandwidth Systems,” in IEEE Trans. Veh. Tech. vol. 60, no. 3, Mar. 2011.

[19] S. Haykin, Adaptive Filter Theory, 4th ed. Englewood Cliffs, NJ:
Prentice-Hall, 2002.

[20] T. S. Rappaport, Wireless Communications, Prentice-Hall, Englewood
Cliffs, NJ, 1996.


