

Reduced-Rank Techniques for Sensor Array Signal Processing and Communications : Design, Algorithms and Applications

Rodrigo C. de Lamare

Communications Research Group, University of York, United Kingdom

*

*. CETUC/PUC-RIO, Brazil

Outline

Part I :

- Introduction
- System model and rank reduction
- Reduced-rank MMSE and MVDR designs
- Eigen-decomposition techniques
- Krylov subspace techniques

Outline (continued)

Part II :

- Joint and iterative optimization (JIO) techniques
- Joint interpolation, decimation and filtering (JIDF) techniques
- Model order selection
- Applications, perspectives and future work
- Concluding remarks

- Reduced-rank detection and estimation techniques are fundamental tools in signal processing and communications.
- Motivation of reduced-rank signal processing :
 - robustness against noise and model uncertainties,
 - computational efficiency,
 - decompositions of signals for design and analysis,
 - inverse problems,
 - feature extraction,
 - dimensionality reduction,
 - problems with short data record, faster training .

- Main goals of reduced-rank methods :
 - simplicity, ease of deployment,
 - to provide minimal reconstruction error losses,
 - to allow simple mapping and inverse mapping functions,
 - to improve convergence and tracking performance for dynamic signals,
 - to reduce the need for storage of coefficients,
 - to provide amenable and stable implementation,

- Communications :
 - Interference mitigation, synchronization, fading mitigation, channel estimation.
 - Estimation with MMSE or LS criteria (Haykin [1]) :

$$\mathbf{w} = \mathbf{R}^{-1}\mathbf{p},$$

where

 \mathbf{w} is a parameter vector with M coefficients,

 $\mathbf{r}(i)$ is the $M \times 1$ input data vector,

 $\mathbf{R} = E[\mathbf{r}(i)\mathbf{r}^{H}(i)]$ is the $M \times M$ covariance matrix,

 $\mathbf{p} = E[d^*(i)\mathbf{r}(i)]$ and d(i) is the desired signal.

- Detection approaches using MMSE or LS estimates.
- Problems : dimensionality of system, matrix inversions.
- How to improve performance?
- How do we deal with the computational complexity?

- Array signal processing :
 - Beamforming, direction finding, information combining with sensors, radar and sonar (van Trees [2]).
 - Parameter estimation with the MVDR criterion :

$$\mathbf{w} = \xi^{-1} \mathbf{R}^{-1} \mathbf{a}(\Theta_k),$$

where

 \mathbf{w} is a parameter vector with M coefficients,

 $\mathbf{r}(i)$ is the M imes 1 input data vector,

 $\mathbf{R} = E[\mathbf{r}(i)\mathbf{r}^{H}(i)]$ is the $M \times M$ covariance matrix,

 $\mathbf{a}(\Theta_k)$ is the $M \times 1$ array response vector and

 $\xi = \mathbf{a}(\Theta_k)^H \mathbf{R}^{-1} \mathbf{a}(\Theta_k).$

- Use of MVDR for beamforming and direction finding.
- Any idea?
- Undermodelling ? \rightarrow designer has to select the key features of $\mathbf{r}(i) \rightarrow$ reduce-rank signal processing

System Model and Rank Reduction

- Consider the following linear model

$$\mathbf{r}(i) = \mathbf{H}(i)\mathbf{s}(i) + \mathbf{n}(i),$$

where s(i) is a $M \times 1$ discrete-time signal organized in data vectors, r(i) is the $M \times 1$ input data, H(i) is a $M \times M$ matrix and n(i) is $M \times 1$ noise vector.

- Dimensionality reduction \rightarrow an M-dimensional space is mapped into a D-dimensional subspace.

System Model and Rank Reduction

- A general reduced-rank version of $\mathbf{r}(i)$ can be obtained using a transformation matrix \mathbf{S}_D (assumed fixed here) with dimensions $M \times D$, where D is the rank. Please see Haykin [1], Scharf-91 [3], Scharf and Tufts-87 [4], Scharf and van Veen-87[5].
- In other words, the mapping is carried out by the transformation matrix \mathbf{S}_D .
- The resulting reduced-rank observed data is given by

$$\overline{\mathbf{r}}(i) = \mathbf{S}_D^H \mathbf{r}(i)$$

where $\overline{\mathbf{r}}(i)$ is a $D \times 1$ vector.

- Challenge : How to efficiently (or optimally) design S_D ?

- Origins of reduced-rank methods as a structured field :
 - 1987 Louis Scharf from University of Colorado defined the problem as "a transformation in which a data vector can be represented by a reduced number of effective features and yet retain most of the intrinsic information of the input data" Scharf and Tufts-87 [4], Scharf and van Veen-87[5].
 - 1987- Scharf Investigation and establishment of the bias versus noise variance trade-off.

- Early Methods :
 - Hotelling and Eckhart (see Scharf [3]) in the 1930's \rightarrow first methods using eigen-decompositions or principal components.
 - Early 1990's applications of eigen-decomposition techniques for reduced-rank estimation in communications. See Haimovich and Bar-Ness [7], Wang and Poor [8], and Hua et al. [9].
 - 1994 \rightarrow Cai and Wang [6], Bell Labs : joint domain localised adaptive processing \rightarrow radar-based scheme, medium complexity.
- Main problems of eigen-decomposition techniques :
 - Require computationally expensive SVD or EVD, or algorithms to obtain the eigenvalues and eigenvectors.
 - Performance degradation with the increase in the signal subspace.

- 1997 Goldstein and Reed [10], University of Southern California : cross-spectral approach.
 - Appropriate selection of eigenvalues values which addresses the performance degradation.
 - Remaining problem : EVD or SVD requirement.
- 1998/9 Partial despreading (PD) of Singh and Milstein [19],
 University of California at San Diego :
 - simple but suboptimal and restricted to CDMA multiuser detection.

- Krylov subspace methods : conjugate gradient techniques developed in the 1950s.
- 1997 \rightarrow Pados and Batallama [20]-[24], University of New York, Buffalo : auxiliary vector filtering (AVF) algorithm :
 - do not require SVD .
 - very fast convergence but complexity is still a problem.
- 1997 2004 multistage Wiener filter (MSWF) of Goldstein,
 Reed and Scharf and its variants [12]-[16] :
 - State-of-the-art in the field and benchmark.
 - Very fast convergence, rank not scaling with system size.
 - equivalence between the AVF (with orthogonal AVs) and the MSWF was established by Chen, Mitra and Schniter [17].
 - Complexity is still a problem as well as the existence of numerical instability for implementation.

- 2004 \rightarrow de Lamare and Sampaio-Neto ([27])- Interpolated FIR filters with time-varying interpolators : low complexity, good performance but rank limited.
- 2005 \rightarrow de Lamare and Sampaio-Neto Joint interpolation, decimation and filtering (JIDF) scheme [33]-[35] - Best known scheme, flexible, smallest complexity in the field, patented.
- − 2007 → de Lamare, Haardt and Sampaio-Neto Robust MSWF
 [17] Development of a robust version of the MSWF using the constrained constant modulus (CCM) design criterion.
- 2007 → de Lamare and Sampaio-Neto Joint iterative optimisation of filters - (JIO) - Development of a generic reducedrank scheme that is very good for mapping and inverse mapping [28].
- 2008 → de Lamare, Sampaio-Neto and Haardt [37] Robust JIDF-type approach called BARC - Development of a robust version of the JIDF using the CCM design criterion.

Linear MMSE Reduced-Rank Estimator Design

- The linear MMSE estimator is the vector $\mathbf{w} = \begin{bmatrix} w_1 \ w_2 \ \dots \ w_M \end{bmatrix}^T$, which is designed to minimize the MSE cost function

$$J = E\left[|d(i) - \mathbf{w}^H \mathbf{r}(i)|^2\right]$$

where d(i) is the desired signal.

- The solution is $\mathbf{w} = \mathbf{R}^{-1}\mathbf{p}$, where $E[d^*(i)\mathbf{r}(i)]$ and $\mathbf{R} = E[\mathbf{r}(i)\mathbf{r}^H(i)]$

- The estimator ${\bf w}$ can be also be computed via adaptive algorithms, however ...
- The convergence speed and tracking of these algorithms depends on M and the eigenvalue spread. Thus, large M implies slow convergence.
- Reduced-rank schemes circumvent these limitations via a reduction in the number of coefficients and the extraction of the key features of the data.

Linear MMSE Reduced-Rank Estimator Design

- Consider a reduced-rank input vector $\bar{\mathbf{r}}(i) = \mathbf{S}_D^H \mathbf{r}(i)$ as the input to an estimator represented by the D vector $\bar{\mathbf{w}} = \begin{bmatrix} \bar{w}_1 \ \bar{w}_2 \ \dots \bar{w}_D \end{bmatrix}^T$ for time interval i.
- The estimator output is

$$x(i) = \bar{\mathbf{w}}^H \mathbf{S}_D^H \mathbf{r}(i)$$

- The MMSE design problem can be stated as

minimize
$$\mathcal{J}(\bar{\mathbf{w}}) = E[|d(i) - x(i)|^2]$$

= $E[|d(i) - \bar{\mathbf{w}}^H \mathbf{S}_D^H \mathbf{r}(i)|^2]$

where d(i) is the desired signal.

Linear MMSE Reduced-Rank Estimator Design

- The MMSE design with the reduced-rank parameters yields

$$\bar{\mathbf{w}} = \bar{\mathbf{R}}^{-1}\bar{\mathbf{p}},$$

where

 $\mathbf{\bar{R}} = E[\mathbf{\bar{r}}(i)\mathbf{\bar{r}}^{H}(i)] = \mathbf{S}_{D}^{H}\mathbf{RS}_{D}$ is the reduced-rank covariance matrix,

 $\mathbf{R} = E[\mathbf{r}(i)\mathbf{r}^{H}(i)]$ is the full-rank covariance matrix,

 $\bar{\mathbf{p}} = E[d^*(i)\bar{\mathbf{r}}(i)] = \mathbf{S}_D^H \mathbf{p} \text{ and } \mathbf{p} = E[d^*(i)\mathbf{r}(i)].$

– The associated MMSE for a rank \boldsymbol{D} estimator is expressed by

 $\mathsf{MMSE} = \sigma_d^2 - \bar{\mathbf{p}}^H \bar{\mathbf{R}}^{-1} \bar{\mathbf{p}} = \sigma_d^2 - \mathbf{p}^H \mathbf{S}_D (\mathbf{S}_D^H \mathbf{RS}_D)^{-1} \mathbf{S}_D^H \mathbf{p}$ where σ_d^2 is the variance of d(i).

MVDR Reduced-Rank Beamformer Design

- Consider a uniform linear array (ULA) of M elements.
- There are K narrowband sources impinging on the array (K < M) with directions of arrival (DOA) θ_k for k = 1, 2, ..., K.

- The received signal is given by :

$$r(i) = \sum_{k=1}^{K} a(\theta_k) s_k(i) + n(i)$$

- Reduced-rank array processing : The output of the array is

$$x(i) = \bar{w}^H \bar{r}(i) = \bar{w}^H(i) S_D^H r(i)$$

MVDR Reduced-Rank Beamformer Design

– In order to design the reduced-rank beamformer $ar{w}(i)$ we consider the following optimization problem

minimize
$$E[|\bar{w}^H S_D^H r(i)|^2] = \bar{w}^H S_D^H R S_D \bar{w}$$

subject to $\bar{w}^H S_D^H a(\theta_k) = 1$

- Approach to obtain a solution : method of Lagrange multipliers

$$\mathcal{L}(\bar{\boldsymbol{w}},\lambda) = E\left[|\bar{\boldsymbol{w}}^H \boldsymbol{S}_D^H \boldsymbol{r}(i)|^2\right] + \lambda(\bar{\boldsymbol{w}}^H \mathbf{S}_D^H \boldsymbol{a}(\theta_k) - 1)$$

- The solution to this design problem is

$$\bar{w} = \frac{(S_D^H R S_D)^{-1} S_D^H a(\theta_k)}{a^H (\theta_k) S_D(i) (S_D^H R S_D)^{-1} S_D^H a(\theta_k)} = \frac{\bar{R}^{-1} \bar{a}(\theta_k)}{\bar{a}^H (\theta_k) \bar{R}^{-1} \bar{a}(\theta_k)}$$

where the reduced-rank covariance matrix is $\bar{R} = E[\bar{r}(i)\bar{r}^{H}(i)] = S_{D}^{H}RS_{D}$ and the reduced-rank steering vector is $\bar{a}(\theta_{k}) = S_{D}^{H}a(\theta_{k})$.

MVDR Reduced-Rank Beamformer Design

– The associated minimum variance (MV) for an MVDR beamformer with rank D is

$$\begin{aligned} \mathsf{MV} &= \frac{1}{\bar{a}^H(\theta_k) \bar{R}^{-1} \bar{a}(\theta_k)} \\ &= \frac{1}{a(\theta_k)^H S_D(S_D^H R S_D)^{-1} S_D^H a(\theta_k)} \end{aligned}$$

- The above expression can be used for direction finding by replacing the angles θ_k with a time-varying parameter (ω) in order to scan the possible angles.
- It can also be employed for general applications of spectral estimation including spectral sensing.

Eigen-Decomposition Techniques

- Why are eigen-decomposition techniques used?
- For MMSE parameter estimation and a rank D estimator we have

$$\mathsf{MMSE} = \sigma_d^2 - \mathbf{p}^H \mathbf{S}_D (\mathbf{S}_D^H \mathbf{R} \mathbf{S}_D)^{-1} \mathbf{S}_D^H \mathbf{p}$$

– Taking the gradient of MMSE with respect to $oldsymbol{S}_D$, we get

$$S_{D,opt} = [v_1 \dots v_D],$$

where v_d for d = 1, ..., D are the eigenvectors of **R**.

– For MV parameter estimation and a rank \boldsymbol{D} estimator we have

$$\mathsf{MV} = \frac{1}{a(\theta_k)^H S_D(S_D^H R S_D)^{-1} S_D^H a(\theta_k)}$$

– Taking the gradient of MV with respect to $old S_D$, we get

$$S_{D,opt} = [v_1 \dots v_D]$$

Eigen-Decomposition Techniques

 Rank reduction is accomplished by eigen- decomposition on the input data covariance matrix

$$R = V\Lambda V^H,$$

where

 $oldsymbol{V} = [oldsymbol{v}_1 \dots oldsymbol{v}_M]$ and

 $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_M).$

- Early techniques : selection of eigenvectors v_j (j = 1, ..., M) corresponding to the largest eigenvalues λ_j

 \rightarrow Transformation matrix is

$$S_D(i) = [v_1 \dots v_D]$$

Eigen-Decomposition Techniques

- Cross-spectral approach of Goldstein and Reed : choose eigenvectors that minimise the design criterion
 - \rightarrow Transformation matrix is

$$\boldsymbol{S}_D(i) = [\boldsymbol{v}_i \dots \boldsymbol{v}_t]$$

- Problems : Complexity $O(M^3)$, optimality implies knowledge of R but this has to be estimated.
- Complexity reduction : adaptive subspace tracking algorithms (popular in the end of the 90s) but still complex and susceptible to tracking problems.
- Can we skip or circumvent an eigen-decomposition?

Krylov Subspace Techniques

- Krylov subspace techniques have a rich history in solving systems of equations and in numerical linear algebra.
- In array signal processing and communications, we are usually interested in solving symmetric and positive definite systems.
- In this context, one of the most important Krylov subspace methods is the conjugate gradient technique invented by Hestenes and Stiefel in 1950s.
- Main idea : to solve Rw = p in the Krylov subspace that spans after k iterations span $\{p, Rp, \dots, R^{k-1}p\}$.
- Complexity : quadratic in M.

Conjugate Gradient Techniques

- Main idea : to solve Rw = p in k iterations. Initialize all parameter vectors $g_o = p - Rw_0$, w_0 , v_0 For $k = 1, \dots, K$ do :

- Calculate step size :

$$lpha_k = rac{oldsymbol{g}_{k-1}^H oldsymbol{g}_{k-1}}{oldsymbol{p}_k^H oldsymbol{R} oldsymbol{p}_k}$$

- Compute parameters :

$$\boldsymbol{w}_k = \boldsymbol{w}_{k-1} + \alpha \boldsymbol{v}_k$$

- Calculate step size :

$$eta_k = rac{oldsymbol{v}_{k-1}^H oldsymbol{R} oldsymbol{g}_{k-1}}{oldsymbol{v}_{k-1}^H oldsymbol{R} oldsymbol{v}_{k-1}}$$

- Compute direction vectors :

$$\boldsymbol{v}_k = \boldsymbol{g}_k + \beta_k \boldsymbol{v}_{k-1}$$

- Calculate negative gradient :

$$\boldsymbol{g}_k = \boldsymbol{g}_{k-1} - \alpha_k \boldsymbol{R} \boldsymbol{v}_k$$

Multi-stage Wiener Filter

 Rank reduction is accomplished by a successive refinement procedure that generates a set of basis vectors, i.e. the signal subspace, known in numerical analysis as the Krylov subspace.

- Design : use of nested filters c_j (j = 1, ..., M) and blocking matrices B_j for the decomposition \rightarrow Projection matrix is

$$S_D(i) = [p, Rp, ..., R^{D-1}p]$$

- Advantages : rank D does not scale with system size, very fast convergence.
- Problems : complexity slightly inferior to RLS algorithms, not robust to signature mismatches in blind operation.

Robust Multi-stage Wiener Filter

Rank reduction is accomplished by a similar successive refinement procedure to original MSWF. However, the design is based on the CCM criterion (de Lamare, Haardt and Sampaio-Neto, IEEE TSP, 2008)).

- Transformation matrix :

$$\mathbf{S}_D(i) = \left[\mathbf{q}(i), \ \mathbf{R}(i)\mathbf{q}(i), \ \dots, \ \mathbf{R}^{(D-1)}(i)\mathbf{q}(i)\right]$$

– The reduced-rank CCM parameter vector with rank \boldsymbol{D} is

$$\mathbf{\bar{w}}(i+1) = \left(\mathbf{S}_D^H(i)\mathbf{R}(i)\mathbf{S}_D(i)\right)^{-1}\mathbf{S}_D^H(i)\mathbf{q}(i),$$

where

$$\mathbf{q}(i) = \mathbf{d}(i) - (\mathbf{p}^{H}(i)\mathbf{R}^{-1}(i)\mathbf{p}(i))^{-1}(\mathbf{p}^{H}(i)\mathbf{R}^{-1}(i)\mathbf{d}(i) - \nu)\mathbf{p}(i),$$
$$\mathbf{d}(i) = E\left[x^{*}(i)\boldsymbol{S}_{D}^{H}(i)\mathbf{r}(i)\right]$$

Applications : Interference Suppression for CDMA

- We assess BER performance of the supervised LS, the CMV-LS and the CCM-LS and their full-rank and reduced-rank versions.
- The DS-CDMA system uses random sequences with N = 64.
- We use 3-path channels with powers $p_{k,l}$ given by 0, -3 and -6 dB. In each run the spacing between paths is obtained from a discrete uniform random variable between 1 and 2 chips.
- Power distribution amongst the users : Follows a log-normal distribution with associated standard deviation of 1.5 dB.
- All LS type estimators use $\lambda = 0.998$ to ensure good performance and all experiments are averaged over 200 runs.

JIO Techniques

- Rank reduction is performed by joint and iterative optimisation (JIO) of the rank-reduction matrix $S_D(i)$ and reduced-rank estimator $\bar{w}(i)$.

- Design criteria : MMSE, LS, LCMV, etc
- Adaptive algorithms : LMS, RLS, etc
- Highlights : rank D does not scale with system size, very fast convergence, proof of global convergence established, very simple.

MMSE Design of JIO Scheme

– The MMSE expressions for the filters $S_D(i)$ and $\bar{w}(i)$ can be computed through the following cost function :

$$J = E\left[|d(i) - \bar{\mathbf{w}}^{H}(i)\mathbf{S}_{D}^{H}(i)\mathbf{r}(i)|^{2}\right]$$

- By fixing $S_D(i)$ and minimizing the cost function with respect to $\bar{w}(i)$, the reduced-rank estimator becomes

$$\bar{\mathbf{w}}(i) = \bar{\mathbf{R}}^{-1}(i)\bar{\mathbf{p}}(i)$$

where

$$\bar{\mathbf{R}}(i) = E[\mathbf{S}_D^H(i)\mathbf{r}(i)\mathbf{r}^H(i)\mathbf{S}_D(i)] = E[\bar{\mathbf{r}}(i)\bar{\mathbf{r}}^H(i)],\\ \bar{\mathbf{p}}(i) = E[d^*(i)\mathbf{S}_D^H(i)\mathbf{r}(i)] = E[d^*(i)\bar{\mathbf{r}}(i)].$$

MMSE Design of JIO Scheme

– Fixing $\bar{\mathbf{w}}(i)$ and minimizing the cost function with respect to $\mathbf{S}_D(i)$, we get

$$\mathbf{S}_D(i) = \mathbf{R}^{-1}(i)\mathbf{P}_D(i)\mathbf{R}_w^{-1}(i)$$

where

$$\mathbf{R}(i) = E[\mathbf{r}(i)\mathbf{r}^{H}(i)],$$

$$\mathbf{P}_{D}(i) = E[d^{*}(i)\mathbf{r}(i)\bar{\mathbf{w}}^{H}(i)] \text{ and }$$

$$\mathbf{R}_{w}(i) = E[\bar{\mathbf{w}}(i)\bar{\mathbf{w}}^{H}(i)].$$

– The associated MMSE is

$$\mathsf{MMSE} = \sigma_d^2 - \bar{\mathbf{p}}^H(i)\bar{\mathbf{R}}^{-1}(i)\bar{\mathbf{p}}(i)$$
 where $\sigma_d^2 = E[|d(i)|^2].$

MMSE Design of JIO Scheme

- The filter expressions for $\bar{\mathbf{w}}(i)$ and $\mathbf{S}_D(i)$ are functions of one another and thus it is necessary to iterate them with an initial guess to obtain a solution.
- Unlike prior art, the JIO scheme provides an iterative exchange of information between the reduced-rank estimator and the transformation matrix.
- The key strategy lies in the joint optimization of the filters \rightarrow the method is guided by the optimization algorithm.
- The rank D or model order must be set by the designer to ensure appropriate or adjusted on-line.

Adaptive JIO-LMS Algorithm

Initialize all parameter vectors, dimensions

For each data vector $i = 1, \ldots, Q$ do :

– Perform dimensionality reduction :

$$\bar{r}(i) = S_D^H(i)r(i)$$

- Estimate parameters

$$S_D(i+1) = S_D(i) + \eta(i)e^*(i)r(i)\overline{w}^H(i)$$

$$\bar{w}(i+1) = \bar{w}(i) + \mu(i)e^*(i)\bar{r}(i)$$

where
$$e(i) = d(i) - \bar{w}^H(i)S_D^H(i)r(i)$$
.

Applications : Interference Suppression for CDMA

- We consider the uplink of a symbol synchronous BPSK DS-CDMA system with K users, N chips per symbol and L propagation paths.
- Initialization : for all simulations, we use $\bar{\mathbf{w}}(0) = \mathbf{0}_{D,1}$, $\mathbf{S}_D(0) = [\mathbf{I}_D \ \mathbf{0}_{D,M-D}]^T$.
- We assume L = 9 as an upper bound on the channel delay spread, use 3-path channels with relative powers given by 0, -3 and -6 dB, where in each run the spacing between paths is obtained from a discrete uniform random variable between 1 and 2 chips and average the experiments over 200 runs.
- The system has a power distribution amongst the users for each run that follows a log-normal distribution with associated standard deviation equal to 1.5 dB.

Applications : Interference Suppression for CDMA

Applications : Interference Suppression for CDMA

Applications : Interference Suppression for CDMA

- Main differences in approach : the beamformers $S_D(i)$ and $\bar{w}(i)$ are jointly optimized and certain key quantities are assumed statistically independent.
- The MVDR expressions for the beamformers $S_D(i)$ and $\bar{w}(i)$ can be computed via the proposed optimization problem minimize $E[|\bar{w}^H(i)S_D^H(i)r(i)|^2] = \bar{w}^H(i)S_D^H(i)RS_D(i)\bar{w}(i)$ subject to $\bar{w}^H(i)S_D^H(i)a(\theta_k) = 1$
- Solution \rightarrow method of Lagrange multipliers

 $\mathcal{L}(\boldsymbol{S}_{D}(i), \bar{\boldsymbol{w}}(i), \lambda) = E\left[|\bar{\boldsymbol{w}}^{H}(i)\boldsymbol{S}_{D}^{H}(i)\boldsymbol{r}(i)|^{2}\right] + \lambda(\bar{\boldsymbol{w}}^{H}(i)\boldsymbol{S}_{D}^{H}(i)\boldsymbol{a}(\theta_{k}) - 1)$

- By fixing $\bar{w}(i)$, minimizing $\mathcal{L}(S_D(i), \bar{w}(i), \lambda)$ with respect to $S_D(i)$ and solving for λ , we get

$$\boldsymbol{S}_{D}(i) = \frac{\boldsymbol{R}^{-1}\boldsymbol{a}(\theta_{k})\bar{\boldsymbol{w}}^{H}(i)\boldsymbol{R}_{w}^{-1}}{\bar{\boldsymbol{w}}^{H}(i)\boldsymbol{R}_{w}^{-1}\bar{\boldsymbol{w}}(i)\boldsymbol{a}^{H}(\theta_{k})\boldsymbol{R}^{-1}\boldsymbol{a}(\theta_{k})},$$

where

 $R = E[r(i)r^H(i)]$ and $R_w = E[\bar{w}(i)\bar{w}^H(i)].$

- A simplified expression for $S_D(i)$ obtained analytically with the exploitation of the constraint is given by

$$\boldsymbol{S}_{D}(i) = rac{\boldsymbol{P}(i)\boldsymbol{a}(\theta_{k})\bar{\boldsymbol{a}}^{H}(\theta_{k})}{\boldsymbol{a}^{H}(\theta_{k})\boldsymbol{P}(i)\boldsymbol{a}(\theta_{k})}$$

- By fixing $S_D(i)$, minimizing the Lagrangian with respect to $\bar{w}(i)$ and solving for λ , we arrive at the expression for $\bar{w}(i)$

$$\bar{\boldsymbol{w}}(i) = \frac{\bar{\boldsymbol{R}}^{-1}(i)\bar{\boldsymbol{a}}(\theta_k)}{\bar{\boldsymbol{a}}^{H}(\theta_k)\bar{\boldsymbol{R}}^{-1}(i)\bar{\boldsymbol{a}}(\theta_k)},$$

where

 $\bar{\boldsymbol{R}}(i) = \boldsymbol{S}_D^H(i) E[\boldsymbol{r}(i) \boldsymbol{r}^H(i)] \boldsymbol{S}_D(i) = E[\bar{\boldsymbol{r}}(i) \bar{\boldsymbol{r}}^H(i)],$ $\bar{\boldsymbol{a}}(\theta_k) = \boldsymbol{S}_D^H(i) \boldsymbol{a}(\theta_k).$

– The associated MV is

$$\mathsf{MV} = \frac{1}{\bar{a}^{H}(\theta_k)\bar{R}^{-1}(i)\bar{a}(\theta_k)}$$

- The expressions of the beamformers $\bar{w}(i)$ and $S_D(i)$ are not closed-form solutions.
- They are functions of each other. Therefore, it is necessary to iterate the expressions with initial values to obtain a solution.
- Existence of multiple solutions (which are identical with respect to the MMSE and symmetrical).
- Global convergence to the optimal reduced-rank LCMV filter (eigen-decomposition with known covariance matrix) has been established.
- The key strategy lies in the joint optimization of the filters.
- The rank D must be adjusted by the designer to ensure appropriate performance or can be estimated via another algorithm.

Adaptive MVDR-LMS Algorithm

Initialize all parameter vectors, dimensions

For each data vector $i = 1, \ldots, Q$ do :

– Perform dimensionality reduction :

$$\bar{r}(i) = S_D^H(i)r(i)$$

– Estimate parameters

$$\boldsymbol{S}_{D}(i+1) = \boldsymbol{S}_{D}(i) - \mu_{s} \boldsymbol{x}^{*}(i) \Big[\boldsymbol{r}(i) \bar{\boldsymbol{w}}^{H}(i) - \boldsymbol{a}(\theta_{k}) \bar{\boldsymbol{w}}^{H}(i) \boldsymbol{a}^{H}(\theta_{k}) \boldsymbol{r}(i) \Big]$$

$$\bar{\boldsymbol{w}}(i+1) = \bar{\boldsymbol{w}}(i) - \mu_w x^*(i) \left[\boldsymbol{I} - \left(\bar{\boldsymbol{a}}^H(\theta_k) \bar{\boldsymbol{a}}(\theta_k) \right)^{-1} \bar{\boldsymbol{a}}(\theta_k) \bar{\boldsymbol{a}}^H(\theta_k) \right] \bar{\boldsymbol{r}}(i)$$

Complexity of MVDR-JIO ALgorithms

Algorithm	Additions	Multiplications
Full-rank-SG [1]	3M + 1	3M + 2
Full-rank-RLS [1]	$3M^2 - 2M + 3$	$6M^2 + 2M + 2$
JIO-LMS	3DM + 2M	3DM + M
	+2D - 2	+5D + 2
JIO-RLS	$3M^2 - 2M + 3$	$7M^2 + 2M$
	$+3D^2 - 8D + 3$	$+7D^{2}+9D$
MSWF-SG [12]	$DM^2 - M^2$	$DM^2 - M^2$
	+3D - 2	+2DM + 4D + 1
MSWF-RLS [12]	$DM^2 + M^2 + 6D^2$	$DM^2 + M^2$
	-8D + 2	+2DM + 3D + 2
AVF [24]	$D((M)^2 + 3(M-1)^2) - 1$	$D(4M^2 + 4M + 1)$
	+D(5(M-1)+1)+2M	+4M + 2

Complexity of JIO-MVDR Algorithms

Applications : MVDR Beamforming

- A smart antenna system with a ULA containing M sensor elements and half wavelength inter-element spacing is considered.
- Figure of merit : the SINR, which is defined as $SINR(i) = \frac{\bar{w}^{H}(i)S_{D}^{H}(i)R_{s}(i)S_{D}(i)\bar{w}(i)}{\bar{w}^{H}(i)S_{D}^{H}(i)R_{I}(i)S_{D}(i)\bar{w}(i)}$

– The signal-to-noise ratio (SNR) is defined as SNR = $\frac{\sigma_d^2}{\sigma^2}$.

- Initialization : $\bar{w}(0) = [1 \ 0 \dots 0]$ and $S_D(0) = [I_D^T \ 0_{D \times (M-D)}^T]$, where $0_{D \times M-D}$ is a $D \times (M-D)$ matrix with zeros in all experiments.

Applications : MVDR Beamforming

Applications : MVDR Beamforming

- A smart antenna system with a ULA containing M sensor elements and half wavelength inter-element spacing is considered.
- We compare the proposed LCMV JIO method with an LS algorithm with the Capon, MUSIC, ESPRIT, AVF, and CG methods, and run K = 1000 iterations to get each curve.
- The spatial smoothing (SS) technique is employed for each algorithm to improve the performance in the presence of correlated sources.
- The DOAs are considered to be resolved if $|\hat{\theta}_{\text{JISO}} \theta_k| < 1^o$.
- The probability of resolution is used as a figure of merit and plotted against the number of snapshots.

Parameters : Probability of resolution versus number of snapshots (separation 3°, SNR= -2dB, q = 2, c= 0.9, m = 30, r = 6, $\delta = 5 \times 10^{-4}$, $\alpha = 0.998$, n = 26)

Parameters : Probability of resolution versus number of snapshots (separation 3°, SNR= -5dB, q= 10, m = 50, r = 6, $\delta = 5 \times 10^{-4}$, $\alpha = 0.998$, n = 41)

Parameters : Probability of resolution versus snapshots (separation 3°, SNR= 0dB, $q_w = 9$, m = 50, r = 6, $\delta = 5 \times 10^{-4}$, $\alpha = 0.998$, n = 41). We assume an incorrect number of sources $q_w = 9$ instead of q = 10.

JIDF Techniques

- Interpolated received vector : $r_I(i) = V^H(i)r(i)$
- Decimated received vector for branch $b : \bar{r}(i) = D_b(i)V^H(i)r(i)$
- Selection of decimation branch D(i) : Euclidean distance
- Expression of estimate as a function of v(i), D(i) and w(i) :

$$x(i) = \bar{\boldsymbol{w}}^{H}(i)\boldsymbol{S}_{D}^{H}(i)\boldsymbol{r}(i) = \bar{\boldsymbol{w}}^{H}(i)\boldsymbol{D}_{b}(i)\boldsymbol{V}^{H}(i)\boldsymbol{r}(i) = \bar{\boldsymbol{w}}^{H}(i)\boldsymbol{D}(i)\boldsymbol{\Re}_{o}(i)\boldsymbol{\eta}^{H}(i)\boldsymbol{r}(i) = \bar{\boldsymbol{w}}^{H}(i)\boldsymbol{D}(i)\boldsymbol{\eta}^{H}(i)\boldsymbol{\eta}^{H}(i)\boldsymbol{r}(i) = \bar{\boldsymbol{w}}^{H}(i)\boldsymbol{\eta}^{$$

– Joint optimisation of v(i), D(i) and $ar{w}(i)$

JIDF Techniques

- Decimation schemes : Optimal, uniform, random, pre-stored.
- The decimation pattern D(i) is selected according to :

$$D(i) = D_b$$
 when $D_b(i) = \arg\min_{1 \le b \le B} |e_b(i)|^2$

– Optimal decimator : combinatorial problem with B possibilities

$$B = \underbrace{M \cdot (M-1) \dots (M-M/L+1)}_{M/L \text{ terms}} = \frac{M!}{(M-M/L)!}$$

- Suboptimal decimation schemes :
 - Uniform (U) Decimation
 - Pre-Stored (PS) Decimation.
 - Random (R) Decimation.

JIDF Techniques

- General framework for decimation schemes

where m (m = 1, 2, ..., M/L) denotes the m-th row and r_m is the number of zeros given by the decimation strategy.

- Suboptimal decimation schemes :
 - **a.** Uniform (U) Decimation with $B = 1 \rightarrow r_m = (m-1)L$.
 - **b.** Pre-Stored (PS) Decimation. We select $r_m = (m-1)L + (b-1)$ which corresponds to the utilization of uniform decimation for each branch *b* out of *B* branches.
 - **c.** Random (R) Decimation. We choose r_m as a discrete uniform random variable between 0 and M 1.

Linear MMSE Design of Parameter Vectors

- The MMSE expressions for $\bar{\mathbf{w}}(i)$ and $\mathbf{v}(i)$ can be computed via the minimization of the cost function

$$J_{\mathsf{MSE}}^{(\mathbf{v}(i),\mathbf{D}(i),\bar{\mathbf{w}}(i))} = E[|d(i) - \mathbf{v}^{H}(i)\Re_{o}^{T}(i)\mathbf{D}^{T}(i)\bar{\mathbf{w}}^{*}(i)|^{2}]$$

- Fixing the interpolator $\mathbf{v}(i)$ and minimizing the cost function with respect to $\mathbf{\bar{w}}(i)$ the interpolated Wiener filter weight vector is

$$\overline{\mathbf{w}}(i) = \alpha(\mathbf{v}) = \overline{\mathbf{R}}^{-1}(i)\overline{\mathbf{p}}(i)$$

where

 $\bar{\mathbf{R}}(i) = E[\bar{\mathbf{r}}(i)\bar{\mathbf{r}}^{H}(i)],$ $\bar{\mathbf{p}}(i) = E[d^{*}(i)\bar{\mathbf{r}}(i)],$ $\bar{\mathbf{r}}(i) = \Re(i)\mathbf{v}^{*}(i).$

Linear MMSE Design of Parameter Vectors

- Fixing $\bar{\mathbf{w}}(i)$ and minimizing the cost function with respect to $\mathbf{v}(i)$ the interpolator weight vector is

$$\mathbf{v}(i) = \boldsymbol{\beta}(\bar{\mathbf{w}}) = \mathbf{R}_u^{-1}(i)\mathbf{p}_u(i)$$

where

 $\mathbf{R}_u(i) = E[\mathbf{u}(i)\mathbf{u}^H(i)], \mathbf{p}_u(i) = E[d^*(i)\mathbf{u}(i)] \text{ and } \mathbf{u}(i) = \mathbf{\Re}^T(i)\bar{\mathbf{w}}^*(i)$

- The associated MSE expressions are

$$J(\mathbf{v}) = J_{\mathsf{MSE}}(\alpha(\mathbf{v}), \mathbf{v}) = \sigma_d^2 - \bar{\mathbf{p}}^H(i)\bar{\mathbf{R}}^{-1}(i)\bar{\mathbf{p}}(i)$$

$$J_{\mathsf{MSE}}(\bar{\mathbf{w}}, \boldsymbol{\beta}(\bar{\mathbf{w}})) = \sigma_d^2 - \mathbf{p}_u^H(i) \mathbf{R}_u^{-1}(i) \mathbf{p}_u(i)$$

where $\sigma_d^2 = E[|d(i)|^2]$.

- The points of global minimum can be obtained by $v_{opt} = \arg \min_{v} J(v)$ and $\bar{w}_{opt} = \alpha(v_{opt})$ or $\bar{w}_{opt} = \arg \min_{\bar{w}} J_{MSE}(\bar{w}, \beta(\bar{w}, \beta(\bar{w}_{opt}), \beta(\bar{w}_{opt})))$

Initialize all parameter vectors, dimensions, number of branches B and select decimation technique

For each data vector $i = 1, \ldots, Q$ do :

- Select decimation branch that minimizes $e_b(i) = d(i) w^H(i)\bar{r}(i)$
- Make $\bar{r}(i) = \bar{r}_b(i)$ when $b = \arg\min_{1 \le b \le B} |e_b(i)|^2$
- Estimate parameters

$$\boldsymbol{v}(i+1) = \boldsymbol{v}(i) + \eta e^*(i)\boldsymbol{u}(i)$$

 $\bar{w}(i+1) = \bar{w}(i) + \mu e^*(i)\bar{r}(i)$

where $u(i) = \Re^T(i)\bar{w}^*(i)$ and $\bar{r}(i) = D(i)V^H(i)r(i)$.

Complexity of JIDF Algorithms

	Number of operations per symbol	
Algorithm	Additions	Multiplications
Full-rank-LMS	2M	2M + 1
Full-rank-RLS	$3(M-1)^2 + M^2 + 2M$	$6M^2 + 2M + 2$
JIDF-LMS	$(B+1)(D) + 2N_I$	(B + 2)D
JIDF-RLS	$3(D-1)^2 + 3(N_I-1)^2$	$6(D)^2 + 6N_I^2$
	$+(D-1)N_I + N_IM + (D)^2$	$+DN_{I} + 2$
	$+N_{I}^{2}+(B+1)D+2N_{I}$	$+(B+2)D+N_{I}$
MWF-LMS	$D(2(\bar{M}-1)^2 + \bar{M} + 3)$	$D(2\bar{M}^2 + 5\bar{M} + 7)$
MWF-RLS	$D(4(\bar{M}-1)^2+2\bar{M})$	$D(4\bar{M}^2 + 2\bar{M} + 3)$
AVF	$D((M)^2 + 3(M-1)^2) - 1$	$D(4(M)^2 + 4M + 1)$
	+D(5(M-1)+1)+2M	+4M + 2

Complexity of JIDF Algorithms

Applications : Interference suppression for CDMA

Parameters : Uplink scenario, QPSK symbols, K users, N chips per symbol and L propagation paths, receiver filter has $M = N + L_p - 1$ taps.

Applications : Interference suppression for CDMA

Parameters : Uplink scenario, QPSK symbols, K users, N chips per symbol and L propagation paths, receiver filter has $M = N + L_p - 1$ taps.

- The system under consideration is a pulsed Doppler radar residing on an airborne platform.
- The radar antenna is a uniformly spaced linear antenna array consisting of N elements. The radar returns are collected in a coherent processing interval (CPI).
- The $M \times 1$ radar space-time snapshot r(i) is then expressed for each of the two hypotheses in the following form

$$H_0: r(i) = v(i);$$

 $H_1: r(i) = as + v(i);$

 Problem : to design a spatial-temporal beamformer with limited training.

Airborne radar system parameters :

Parameter	Value
Antenna array	Sideway-looking array (SLA)
Carrier frequency (f_c)	450 MHz
Transmit pattern	Uniform
$PRF(f_r)$	300 Hz
Platform velocity (v)	75 m/s
Platform height (h)	9000 m
Clutter-to-Noise ratio (CNR)	40 dB
Elements of sensors (N)	8
Number of Pulses (J)	8

- We apply the a variation of the JIDF scheme called SAABF to the downlink of a multiuser BPSK DS-UWB system and evaluate their performance against existing methods.
- In all numerical simulations, the pulse shape adopted is the RRC pulse with the pulse-width 0.375ns.
- The spreading codes are generated randomly with a spreading gain of 24 and the data rate of the communication is approximately 110Mbps.
- The standard IEEE 802.15.4a channel model for the NLOS indoor environment is employed.
- We assume that the channel is constant during the whole transmission.
- The sampling rate at the receiver is assumed to be 8GHz that is the same as the standard channel model and the observation window length M for each data symbol is set to 120 samples.

Parameters :BER performance of different algorithms for a SNR=16dB and 3 users. The following parameters were used : full-rank LMS ($\mu = 0.075$), full-rank RLS ($\lambda = 0.998$, $\delta = 10$), MSWF-LMS (D = 6, $\mu = 0.075$), MSWF-RLS (D = 6, $\lambda = 0.998$), AVF (D = 6), SAABF (1,3,M)-LMS ($\mu_w = 0.1$, $\mu_{\psi} = 0.2$, 2 iterations) and SAABF (1,3,M)-RLS ($\lambda = 0.998$, $\delta = 0.1$, 1 iteration).

Parameters :BER performance of the proposed SAABF scheme versus the number of training symbols for a SNR=16dB. The number of users is 3 and the following parameters were used : SAABF-RLS ($\lambda = 0.98$, $\delta = 10$).

Model-order selection techniques

- Basic principle : to determine the best fit between observed data and the model used.
- General approaches to model-order selection :
 - Setting of upper bounds on models with "some" prior knowledge : one of the most used in communications.
 - Akaike's information theoretic criterion : works well, requires a large number of computations, not suitable to time-varying scenarios.
 - Minimum description length (MDL) : also works well, not suitable to time-varying scenarios.
 - Adaptive filtering approach : use for adaptive algorithms with dynamic lengths, work well and have lower complexity than prior art.

Akaike Information Criterion

- Basic principle : employs information entropy to perform model order selection.
- Method :

$$AIC = 2k - 2l(\hat{\theta}),$$

where

- k is the number of parameters
- $\hat{\theta}$ is the ML estimate
- $l(\cdot)$ is the log likelihood function.
- The lower the AIC the better the model selected.
- It is more suitable to ML estimation problems.
Minimum Description Length

- Basic principle : given a data set and competing statistical models, the best one is that which provides the shortest description length.
- Method :

$$\mathsf{MDL} = 1/2mlnN - l(\hat{\theta}),$$

where

N is the number of samples

- m is the number of independently adjusted parameters
- $l(\cdot)$ is the log likelihood function.
- The shortest the MDL the better the model selected.
- It is more suitable to ML estimation problems.
- The MDL converges to the true model order.

Model-Order Selection for Time-Varying Scenarios

- Approaches used for reduced-rank techniques :
 - Testing of orthogonality conditions between columns of transformation matrix $m{S}_D(i)$ [12] :
 - used with the MSWF for selecting the rank D.
 - Cross-validation of data [24] :
 - used with the AVF,
 - works well but can be complex since the algorithms sometimes selects D quite large.
 - This can be a problem if M is large and D approaches it.
 - Use of a priori values of least-squares type cost functions with lower and upper bounds :
 - works very well and it is simple to use and design [12, 17, 35].
 - It can be easily extended when the designer has multiple parameters with orders to adjust.

Model-order selection with the JIO-MVDR algorithm

 Consider the exponentially weighted a posteriori least-squares type cost function described by

$$\mathcal{C}(\boldsymbol{S}_{D}(i-1), \bar{\boldsymbol{w}}^{(D)}(i-1)) = \sum_{l=1}^{i} \alpha^{i-l} |\bar{\boldsymbol{w}}^{H, (D)}(i-1)\boldsymbol{S}_{D}(i-1)\boldsymbol{r}(l)|^{2},$$

where α is the forgetting factor and $\bar{\mathbf{w}}^{(D)}(i-1)$ is the reducedrank filter with rank D.

- For each time interval *i*, we can select the rank D_{opt} which minimizes $C(S_D(i-1), \bar{w}^{(D)}(i-1))$ and the exponential weighting factor α is required as the optimal rank varies as a function of the data record.
- The key quantities to be updated are $S_D(i), \bar{w}(i), \bar{a}(\theta_k)$ and $\bar{P}(i)$ (RLS algorithm).

Model-order selection with JIO-MVDR algorithms

– Let us define the following extended matrix $S^{(D)}(i)$ and the extended reduced-rank beamformer $ar{w}^{(D)}(i)$ as follows :

$$\boldsymbol{S}^{(D)}(i) = \begin{bmatrix} s_{1,1} & \cdots & s_{1,D_{\min}} & \cdots & s_{1,D_{\max}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ s_{M,1} & \cdots & s_{M,D_{\min}} & \cdots & s_{M,D_{\max}} \end{bmatrix}$$
(1)

and

$$\bar{\boldsymbol{w}}^{(D)}(i) = \begin{bmatrix} w_1 \\ \vdots \\ w_{D_{\min}} \\ \vdots \\ w_{D_{\max}} \end{bmatrix}$$

 $-S^{(D)}(i)$ and $\bar{w}^{(D)}(i)$ are updated along with the associated quantities $\bar{a}(\theta_k)$ and $\bar{P}(i)$ for the maximum allowed rank D_{\max} .

Model-order selection with JIO-MVDR algorithms

- The model-order selection algorithm determines the rank that is best for each time instant i using the cost function.
- The model-order selection algorithm is then given by

$$D_{\text{opt}} = \arg \min_{\substack{D_{\min} \leq d \leq D_{\max}}} C(S_D(i-1), \bar{w}^{(D)}(i-1))$$

where

d is an integer,

 D_{min} and D_{max} are the minimum and maximum ranks allowed for the reduced-rank filter, respectively.

Model-order selection with JIO-MVDR algorithms

SINR performance of LCMV (a) SG and (b) RLS algorithms against snapshots with M = 24, SNR = 12 dB with automatic rank selection.

Model-order selection with JIDF algorithms

 Consider the following exponentially weighed a posteriori leastsquares type cost function

$$C(\bar{\mathbf{w}}^{(D)}, \mathbf{v}^{(N_I)}, \mathbf{D}) = \sum_{l=1}^{i} \alpha^{i-l} |d(l) - \bar{\mathbf{w}}^{H, (D)}(l) \mathbf{D}(l) \Re_o(l) \mathbf{v}^{*, (N_I)}(l)|^2$$

where

 α is the forgetting factor, $\tilde{\mathbf{w}}^{(D)}(i-1)$ is the reduced-rank filter with rank D and $\mathbf{v}^{(N_I)}(i)$ is the interpolator filter with rank N_I .

- For each time interval *i* and a given decimation pattern and *B*, we can select *D* and *N*_{*I*} which minimizes $C(\bar{\mathbf{w}}^{(D)}, \mathbf{v}^{(N_I)}, \mathbf{D})$.

Model-order selection with JIDF algorithms

– The model-order selection algorithm that chooses the best lengths D_{opt} and $N_{I_{\text{opt}}}$ for the filters $\mathbf{v}(i)$ and $\mathbf{\bar{w}}(i)$, respectively, is given by

$$\{D_{\text{opt}}, N_{I_{\text{opt}}}\} = \arg \min_{\substack{N_{I_{\min}} \leq n \leq N_{I_{\max}} \\ D_{\min} \leq d \leq D_{\max}}} \mathcal{C}(\bar{\mathbf{w}}^{(d)}, \mathbf{v}^{(n)}, \mathbf{D})$$

where

d and n are integers,

 D_{\min} and D_{\max} and

 $N_{I_{\min}}$ and $N_{I_{\max}}$ are the minimum and maximum ranks allowed for $\bar{\mathbf{w}}(i)$ and $\mathbf{v}(i)$, respectively.

Model-order selection with JIDF algorithm

SINR performance against rank (D) for the analyzed schemes using LMS and RLS algorithms.

Applications, perspectives and future work

 Applications : interference suppression, beamforming, channel estimation, echo cancellation, target tracking, wireless sensor networks, signal compression, radar, control, seismology, etc.

- Perspectives :

- Work in this field is not fully explored.
- Many unsolved problems when dimensions become large : estimation, tracking, general acquisition, networks, distributed problems .

- Future work :

- Information theoretic study of very large observation data : performance limits as M goes to infinity.
- Development of vector and matrix-based parameter estimates as opposed to current scalar parameter estimation of existing methods.
- Distributed reduced-rank processing.

Concluding remarks

- Reduced-rank signal processing is a powerful set of tools that allow the processing of large data vectors, enabling a substantial reduction in training and complexity.
- An overview of reduced-rank techniques, detailing eigen-decompose methods and the MSWF, was presented along with applications in communications and sensor array systems.
- A family of reduced-rank algorithms based on JIO techniques was presented along with applications.
- A recently proposed reduced-rank scheme called JIDF was also briefly reviewed with applications.
- Several applications have been considered as well as a number of future investigation topics have been discussed.

Questions?

Thank you!

Contact : Dr. R. C. de Lamare Communications Research Group University of York Website : http ://www-users.york.ac.uk/~rcdl500/ E-mail : rcdl500@ohm.york.ac.uk

References

- 1. S. Haykin, *Adaptive Filter Theory*, 4rd edition, Prentice-Hall, Englewood Cliffs, NJ, 2002.
- 2. H. L. Van Trees, "Detection, Estimation, and Modulation Theory, Part IV, Optimum Array Processing", John Wiley and Sons, 2002.
- 3. L. L. Scharf, "The SVD and reduced rank signal processing," Signal Processing, vol. 25, no. 2, pp. 113-133, 1991.
- 4. L. L. Scharf and D. W. Tufts, "Rank reduction for modeling stationary signals," *IEEE Transactions on Acoustics, Speech and Signal Processing*, vol. ASSP-35, pp. 350-355, March 1987.
- L. L. Scharf and B. van Veen, "Low rank detectors for Gaussian random vectors," *IEEE Transactions on Acoustics, Speech and Signal Processing*, vol. ASSP-35, pp. 1579-1582, November 1987.
- 6. H. Wang and L. Cai, "On adaptive spatial-temporal processing for airborne surveillance radar systems," IEEE Trans. Aerospace and Electronic Systems, vol. 30, pp. 660-699, Jul 1994.
- 7. A. M. Haimovich and Y. Bar-Ness, "An eigenanalysis interference canceler," *IEEE Trans. on Signal Processing*, vol. 39, pp. 76-84, Jan. 1991.

- 8. X. Wang and H. V. Poor, "Blind multiuser detection : A subspace approach," *IEEE Trans. on Inf. Theory*, vol. 44, pp. 677-690, March 1998.
- Y. Hua, M. Nikpour and P. Stoica, "Optimal reduced rank estimation and filtering," IEEE Transactions on Signal Processing, pp. 457-469, Vol. 49, No. 3, March 2001.
- 10. J. S. Goldstein and I. S. Reed, "Reduced rank adaptive filtering," *IEEE Trans. Signal Processing*, vol. 45, pp. 492-496, Feb. 1997.
- 11. J. S. Goldstein, I. S. Reed and L. L. Scharf, "A multistage representation of the Wiener filter based on orthogonal projections," *IEEE Transactions on Information Theory*, vol. 44, November, 1998.
- 12. M. L. Honig and J. S. Goldstein, "Adaptive reduced-rank interference suppression based on the multistage Wiener filter," *IEEE Trans. on Communications*, vol. 50, no. 6, June, 2002.
- 13. R. C. de Lamare, M. Haardt and R. Sampaio-Neto, "Blind Adaptive Constrained Reduced-Rank Parameter Estimation based on Constant Modulus Design for CDMA Interference Suppression," IEEE Transactions on Signal Processing, vol. 56, no. 6, pp. 2470 - 2482, June 2008.
- 14. C. C. Hu and I. S. Reed, "Space-Time Adaptive Reduced-Rank Multistage Wiener Filtering for Asynchronous DS-CDMA," *IEEE Trans. on Sig. Proc.*, vol. 52, no. 7, July, 2004.

- 15. S.-H. Wu; U. Mitra and C.-C. J Kuo, "Reduced-rank multistage receivers for DS-CDMA in frequency-selective fading channels", *IEEE Transactions on Communications*, vol. 53, no. 2, Feb. 2005.
- 16. R. C. de Lamare, M. Haardt and R. Sampaio-Neto, "Blind Adaptive Constrained Reduced-Rank Parameter Estimation based on Constant Modulus Design for CDMA Interference Suppression", *IEEE Transactions on Signal Processing*, vol. 56, No. 6, June 2008.
- 17. W. Chen, U. Mitra, and P. Schniter, "On the equivalence of three reduced rank linear estimators with applications to DS-CDMA," *IEEE Transactions on Information Theory*, vol.48, pp. 2609-2614, September 2002.
- 18. M. Yukawa, R. C. de Lamare, and I. Yamada, "Robust Reduced-Rank Adaptive Algorithm Based on Parallel Subgradient Projection and Krylov Subspace", *IEEE Transactions on Signal Processing*, vol. 57, no. 12, pp. 4660-4674, 2009.

N. Song, R. C. de Lamare, M. Haardt and M. Wolf, "Adaptive Widely Linear Reduced-Rank Interference Suppression based on the Multi-Stage Wiener Filter", IEEE Transactions on Signal Processing, 2012.

 R. Singh and L. B. Milstein, "Adaptive interference suppression for DS/CDM. IEEE Transactions on Communications, vol. 50, no. 12, pp. 1902-1905, November, 2002.

- 20. D. A. Pados and S. N. Batalama, "Low complexity blind detection of DS/CDMA signals : Auxiliary-vector receivers," *IEEE Transactions on Communications*, vol. 45, pp. 1586-1594, December 1997.
- 21. D. A. Pados and S. N. Batalama, "Joint space-time auxiliary-vector filtering for DS/CDMA systems with antenna arrays," *IEEE Trans. on Communications*, vol. 47, no. 8, Sept. 1999.
- 22. D. A. Pados, F. J. Lombardo and S. N. Batalama, "Auxiliary Vector Filters and Adaptive Steering for DS-CDMA Single-User Detection," *IEEE Transactions on Vehicular Technology*, vol. 48, No. 6, November 1999.
- 23. D. A. Pados, G. N. Karystinos, "An iterative algorithm for the computation of the MVDR filter," *IEEE Trans. on Sig. Proc.*, vol. 49, No. 2, February, 2001.
- 24. H. Qian and S.N. Batalama, "Data record-based criteria for the selection of an auxiliary vector estimator of the MMSE/MVDR filter", *IEEE Trans. on Communications*, vol. 51, no. 10, Oct. 2003, pp. 1700 - 1708.
- 25. L. Wang, R. C. de Lamare, "Auxiliary Vector Filtering Algorithm Based on Constrained Constant Modulus Design for Robust Adaptive Beamforming", *IEEE Transactions on Signal Processing*, 2010.
- 26. R. C. de Lamare and R. Sampaio-Neto, "Adaptive Reduced-Rank MMSE Filtering with Interpolated FIR Filters and Adaptive Interpolators", *IEEE Signal Processing Letters*, vol. 12, no. 3, March, 2005.

- 27. R. C. de Lamare and R. Sampaio-Neto, "Adaptive Interference Suppression for DS-CDMA Systems based on Interpolated FIR Filters with Adaptive Interpolators in Multipath Channels", *IEEE Trans. Vehicular Technology*, Vol. 56, no. 6, September 2007.
- 28. R. C. de Lamare and Raimundo Sampaio-Neto, "Reduced-Rank Adaptive Filtering Based on Joint Iterative Optimization of Adaptive Filters", IEEE Signal Processing Letters, Vol. 14, no. 12, December 2007.
- 29. R. C. de Lamare and R. Sampaio-Neto, "Reduced-Rank Space-Time Adaptive Interference Suppression with Joint Iterative Least Squares Algorithms for Spread Spectrum Systems", *IEEE Transactions on Vehicular Technology*, 2010.
- 30. R. Fa and R. C. de Lamare, "Reduced-Rank STAP Using Joint Optimization Algorithms", *IEEE Transactions on Aerospace and Electronic Systems*, 2010.
- 31. L. Wang, R. C. de Lamare and M.Yukawa, "Adaptive Reduced-Rank Constrained Constant Modulus Algorithms Based on Joint Iterative Optimization of Filters for Beamforming", *IEEE Transactions on Signal Processing*, vol. 58, no. 6, pp. 2983-2997, 2010.
- 32. P. Clarke and R. C. de Lamare, "Low-Complexity Reduced-Rank Linear Interference Suppression based on Set-Membership Joint Iterative Optimization for DS-CDMA Systems", *IEEE Transactions on Vehicular Technology*, vol. 60, no. 9, 4324-4337, 2011

- 33. R. C. de Lamare and R. Sampaio-Neto, "Adaptive Space-Time Reduced-Rank Interference Suppression for Asynchronous DS-CDMA based on a Diversity Combined Decimation and Interpolation Scheme", *Proc. IEEE International Conference on Communications*, 2007.
- 34. R. C. de Lamare and R. Sampaio-Neto, "Adaptive Reduced-Rank MMSE Parameter Estimation based on an Adaptive Diversity Combined Decimation and Interpolation Scheme," *Proc. IEEE International Conference on Acoustics, Speech and Signal Processing*, 2007.
- 35. R. C. de Lamare and R. Sampaio-Neto, "Adaptive Reduced-Rank Processing Based on Joint and Iterative Interpolation, Decimation and Filtering", *IEEE Trans. on Signal Processing*, vol. 57, 2009.
- R. Fa., R. C. de Lamare, and L. Wang, "Reduced-Rank STAP Schemes for Airborne Radar Based on Switched Joint Interpolation, Decimation and Filtering Algorithm", *IEEE Transactions on Signal Processing*, vol. 58, no. 8, pp. 4182-4194, 2010.
- 37. R. C. de Lamare, R. Sampaio-Neto, M. Haardt, "Blind Adaptive Reduced-Rank Estimation Based on The Constant Modulus Criterion and Diversity-Combined Decimation and Interpolation", *Proc. IEEE ICASSP*, 2008.
- 38. R. C. de Lamare, R. Sampaio-Neto and M. Haardt, "Blind Adaptive Constrained Constant-Modulus Reduced-Rank Interference Suppression Algorithms Based on Interpolation and Switched Decimation", *IEEE Transactions on Signal Processing*, vol. 59, no. 2, pp. 681-695, 2011.

- 39. S. Li and R. C. de Lamare, "Reduced-Rank Linear Interference Suppression for DS-UWB Systems Based on Switched Approximations of Adaptive Basis Functions", IEEE Transactions on Vehicular Technology, vol. 60, no. 2, pp. 485-497, 2011.
- 40. P Stoica, Y Selen, "Model-order selection : a review of information criterion rules", IEEE Signal Processing Magazine, vol. 21, no. 4, pp. 36-47, 2004.
- 41. H. Akaike, "A new look at statistical model identification," IEEE Trans. Automat. Contr., vol. 19, pp. 716-723, Dec. 1974.
- 42. J. Rissanen, "Estimation of structure by minimum description length," Circuits, Syst. Signal Process., vol. 1, no. 4, pp. 395-406, 1982.