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Adaptive Reduced-Rank Processing Based on Joint
and Iterative Interpolation, Decimation and Filtering

Rodrigo C. de Lamare and Raimundo Sampaio-Neto

Abstract—We present an adaptive reduced-rank signal processing tech-
nique for performing dimensionality reduction in general adaptive filtering
problems. The proposed method is based on the concept of joint and iter-
ative interpolation, decimation and filtering. We describe an iterative least
squares (LS) procedure to jointly optimize the interpolation, decimation
and filtering tasks for reduced-rank adaptive filtering. In order to design
the decimation unit, we present the optimal decimation scheme based on
the counting principle and also propose low-complexity decimation struc-
tures. We then develop low-complexity least-mean squares (LMS) and re-
cursive least squares (RLS) algorithms for the proposed scheme along with
automatic rank and branch adaptation techniques. An analysis of the con-
vergence properties and issues of the proposed algorithms is carried out
and the key features of the optimization problem such as the existence of
multiple solutions are discussed. We consider the application of the pro-
posed algorithms to interference suppression in CDMA systems. Simula-
tions results show that the proposed algorithms outperform the best known
reduced-rank schemes with lower complexity.

Keywords— Adaptive filtering, reduced-rank techniques, adaptive algo-
rithms, CDMA systems .

I. INTRODUCTION

IN the literature of adaptive filtering algorithms [1], [2], a large
number of algorithms with different trade-offs between per-

formance and complexity has been reported. In general, the con-
vergence and tracking performances of these algorithms depend
on the eigenvalue spread of the full-rank covariance matrix R of
the input data r(i) and the number of elements M in the filter
[1], [2]. A challenging problem is to perform signal processing
when the number of elements in the filter is very large and the
algorithm requires a large number of samples (or data record)
to be trained. Furthermore, in highly dynamic systems such as
those in wireless communications, adaptive filters with a large
number of elements usually fail or provide poor performance in
tracking signals embedded in interference and noise.

Reduced-rank filtering is a very powerful technique that has
gained considerable attention in the last few years due to its ef-
fectiveness in low-sample-support situations where it can offer
improved convergence performance at an affordable complexity
[6]-[22]. The origins of reduced-rank filtering lie in the problem
of feature selection encountered in statistical signal processing
[6]. The aim of these methods is to devise a transformation in
such a way that the data vector can be represented by a reduced
number of effective features and yet retain most of the intrin-
sic information content of the input data [6]. In this context, the
existing reduced-rank methods obtain a low-rank approximation
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of r(i) with dimension M that provides faster acquisition of the
signal statistics usually leading to better convergence and track-
ing performance. Among the available reduced-rank filtering
methods are the eigen-decomposition techniques [6]-[11], the
multistage Wiener filter (MWF) [12],[13], the auxiliary-vector
filtering (AVF) algorithm [17]-[21], the adaptive interpolated
FIR filters with time-varying interpolators [22], [23] that are
rank limited and the joint iterative reduced-rank scheme based
on optimization of a projection matrix and a reduced-rank fil-
ter [24]. The major problem with the eigen-decomposition, the
MWF, the AVF and the method in [24] is that they rely on esti-
mates of R as a starting point for the subspace decomposition.
The estimation process of R with time averages can be prob-
lematic, often requires large data records, and may experience
tracking problems in dynamic situations.

In this work, we propose a reduced-rank adaptive filtering
scheme based on a joint and iterative procedure that optimizes
the interpolation, the decimation and the filtering tasks. In this
scheme, which was firstly presented in [25], [26], the number of
elements for filtering is substantially reduced, resulting in con-
siderable computational savings and very fast convergence per-
formance for general filtering applications. A unique feature of
the proposed method is that, unlike existing schemes, it does not
rely on estimates of R (that requires at least 2M data vectors for
convergence in non-stationary scenarios [1], [2]) before project-
ing the received data onto a reduced-rank subspace. The pro-
posed approach skips the estimation of R and obtains directly
the subspace of interest via a set of simple interpolation and dec-
imation operations. We describe the optimal decimation scheme
and low-complexity decimation schemes for the proposed struc-
ture. We derive LMS and RLS algorithms for implementing the
proposed scheme and evaluate their computational complexity.
We also propose rank and branch adaptation techniques for au-
tomatically determining the number of branches necessary to
achieve a pre-specified performance and the best rank for the
interpolator and reduced-rank filters. The convergence issues
and properties of the method are discussed and several impor-
tant features of the optimization problem such as the existence
of multiple solutions are discussed. We consider the application
of the proposed scheme to interference suppression in CDMA
systems.

The rest of this work is organized as follows. Section II states
the problem and discusses the design of reduced-rank filters.
Section III presents the proposed reduced-rank adaptive filter-
ing scheme, describes the proposed joint iterative least squares
(LS) optimization of the interpolation, decimation and filtering
tasks, and details the proposed decimation schemes. In Section
IV, we present LMS and RLS algorithms for the joint optimiza-
tion of the interpolator, decimation unit and the reduced-rank fil-
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ters along with the rank and branch adaptation techniques. The
convergence properties of the proposed method and the exis-
tence of solutions are studied in Section V. Section VI presents
and discusses the simulation results, while Section VII gives the
conclusions.

II. DESIGN OF REDUCED-RANK FILTERS AND PROBLEM
STATEMENT

Let us first consider a general reduced-rank filtering design
problem. A reduced-rank algorithm shall extract the most im-
portant features of the processed data and reduce the number
of parameters for estimation. This dimensionality reduction is
accomplished by projecting the received vector onto a lower di-
mensional subspace. Specifically, consider an M×D projection
matrix SD which carries out a dimensionality reduction on the
M × 1 input data vector r(i) as given by

r̄(i) = SH
Dr(i) (1)

where, in what follows, all D-dimensional quantities are de-
noted with a ”bar”. The resulting projected received vector
r̄(i) is the input to a filter represented by the D × 1 vector
w̄ = [w̄1 w̄2 . . . w̄D]T . The filter output corresponding to the
ith time instant is

x(i) = w̄H r̄(i) (2)

Let us perform the MMSE filter design and substitute (2) into
the MSE cost function

J = E
[|d(i)− x(i)|2] (3)

where d(i) is the desired signal. The reduced-rank filter that
solves (3) is given by

w̄ = R̄−1p̄ (4)

where R̄ = E[r̄(i)r̄H(i)] = SH
DRSD is the reduced-rank co-

variance matrix, p̄ = E[d∗(i)r̄(i)] = SH
Dp is the reduced-

rank cross-correlation vector and p = E[d∗(i)r(i)] is the cross-
correlation vector. The associated MMSE for a rank-D filter is
expressed by

MMSE = σ2
d − p̄HR̄−1p̄ = σ2

b − pHSD(SH
DRSD)−1SH

Dp
(5)

where σ2
d is the variance of d(i). Based upon the problem state-

ment above, the design of reduced-rank schemes can be stated
as follows. How to efficiently (or optimally) design a transfor-
mation matrix SD that projects the input data vector r(i) onto
a reduced-rank data vector r̄(i)? This problem is addressed by
proposed adaptive reduced-rank filtering scheme detailed next.

III. PROPOSED ADAPTIVE REDUCED-RANK FILTERING
SCHEME

In this section we detail the proposed adaptive reduced-rank
filtering scheme based on the joint and iterative interpolation,
decimation and filtering. The motivation for designing a trans-
formation SD(i) based on interpolation and decimation comes
from two observations. The first is that rank reduction can be
performed by eliminating (decimating) samples that are not use-
ful in the filtering process and then attempting to recreate the

Fig. 1. Proposed Adaptive Reduced-Rank Filtering Scheme.

eliminated samples with an interpolator. The second comes
from the structure of SD(i), whose columns can be represented
by a time-varying interpolator and a time-varying decimator and
which can form bases for dimensionality reduction. The pro-
posed scheme, denoted JIDF, is shown in Fig. 1, where an
interpolator, time-varying decimation unit and a reduced-rank
filter that are time-varying are employed. The input vector
r(i) = [r(i)

0 . . . r
(i)
M−1]

T is filtered by the interpolator filter

v(i) = [v(i)
0 . . . v

(i)
NI−1]

T and yields the interpolated vector
rI(i) with M samples, which is expressed by

rI(i) = VH(i)r(i) (6)

where the M×M Toeplitz convolution matrix V(i) is given by

V(i) =




v
(i)
0 0 . . . 0
... v

(i)
0 . . . 0

v
(i)
NI−1

... . . . 0
0 v

(i)
NI−1 . . . 0

0 0
. . . 0

...
...

. . .
...

0 0 . . . v
(i)
0




.

In order to facilitate the description of the scheme, let us intro-
duce an alternative way of expressing the vector rI(i), that will
be useful in the following through the equivalence:

rI(i) = VH(i)r(i) = <o(i)v∗(i), (7)

where the M ×NI matrix <o(i) with the samples of r(i) has
a Hankel structure [27] and is described by

<o(i) =




r
(i)
0 r

(i)
1 . . . r

(i)
NI−1

r
(i)
1 r

(i)
2 . . . r

(i)
NI

...
...

. . .
...

r
(i)
M−1 r

(i)
M . . . r

(i)
M+NI−2




. (8)

The dimensionality reduction is performed by a decimation
unit with D ×M decimation matrices Db(i) that projects rI(i)
onto D × 1 vectors r̄b(i) with b = 1, . . . , B, where D = M/L
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is the rank and L is the decimation factor. The D × 1 vector
r̄b(i) for branch b is expressed by

r̄b(i) = Db(i)rI(i) = Db(i)<o(i)v∗(i), (9)

where the vector r̄b(i) for branch b is used in the minimization
of the squared norm of the error for branch b

eb(i) = d(i)− w̄H(i)r̄b(i).

The decimation pattern D(i) is selected according to:

D(i) = Dbs
(i) when bs = arg min

1≤b≤B
|eb(i)|2, (10)

where B is the number of decimation branches which is a pa-
rameter to be set by the designer.

After the decimation unit, which carries out dimensional-
ity reduction, the proposed JIDF scheme employs a reduced-
rank FIR filter w̄(i) with D elements to yield the output of the
scheme. A key strategy for the joint and iterative optimiza-
tion that follows is to express the output of the JIDF structure
x(i) = w̄H(i)r̄(i) as a function of v(i), the decimation matrix
D(i) and w̄(i) as follows:

x(i) = w̄H(i)SH
D(i)r(i) = w̄H(i)D(i)<o(i)v∗(i) = vH(i)u(i),

(11)

where u(i) = <T
o (i)DT (i)w̄∗(i) is an NI × 1 vector. The ex-

pression in (11) indicates that the dimensionality reduction car-
ried out by the proposed scheme depends on finding appropriate
v(i), D(i) for constructing SD(i) as shown next.

A. Joint and Iterative Least Squares Optimization Algorithm

We will describe in this part the proposed joint and iterative
optimization algorithm that adjusts the parameters of the inter-
polator filter v(i), selects the decimation pattern D(i) and ad-
justs the reduced-rank filter w̄(i). The proposed optimization
considers the exponentially weighted LS cost function

J (v(i),D(i),w̄(i))
LS =

i∑

l=1

αi−l| d(l)− w̄H(i)SH
D(i)r(l) |2

=
i∑

l=1

αi−l| d(l)− vH(i)<T
o (l)DT (i)w̄∗(i) |2

(12)

The decimation pattern D(i) is optimized according to the a pri-
ori error at branch b

ξb(i) = d(i)− w̄H(i− 1)Db(i)<o(i)v∗(i− 1) (13)

and selected on the basis of the following criterion:

D(i) = Dbopt(i) when bopt = arg min
1≤b≤B

|ξb(i)|2, (14)

By fixing D(i) and w̄(i), taking the gradient of (12) with
respect to v(i), equating it to a null vector and solving the equa-
tion, the interpolator v(i) that minimizes (12) is expressed by

v(i) = β(w̄(i− 1),D(i)) = R̄−1
u (i)p̄u(i), (15)

where u(i) = <T
o (i)DT (i)w̄∗(i − 1), p̄u(i) =∑i

l=1 αi−ld∗(l)u(l) and R̄u(i) =
∑i

l=1 αi−lu(l)uH(l).
By fixing v(i) and D(i), taking the gradient of (12) with re-

spect to w̄(i), equating it to a null vector and solving the equa-
tion, the reduced-rank filter that minimizes (12) is given by

w̄(i) = γ(v(i),D(i)) = R̄−1(i)p̄(i), (16)

where r̄(i) = D(i)<o(i)v∗(i), p̄(i) =
∑i

l=1 αi−ld∗(l)r̄(l)
and R̄(i) =

∑i
l=1 αi−lr̄(l)r̄H(l). The associated sum of error

squares (SES) expressions are given by

J (v(i)) = JLS(v(i),D(i), γ(v(i),D(i)))) = εd−p̄H(i)R̄−1(i)p̄(i),
(17)

JLS(β(w̄(i),D(i)),D(i), w̄(i)) = εd − pH
u (i)R−1

u (i)pu(i),
(18)

where εd =
∑i

l=1 αi−l|d(l)|2 is the energy of the desired re-
sponse. This structure trades off a full-rank matrix inversion
against the inversion of two matrices with rank D and NI and
a branch selection procedure. Note that the expressions (14),
(15) and (16) are not closed-form solutions since they depend
on each other. Therefore, it is necessary to iterate (14), (15) and
(16) with an initial guess to obtain a solution for the proposed
LS optimization. Low-complexity joint and iterative solutions
are sought via adaptive algorithms in the next section.

B. Design of the Decimation Unit

In this subsection, we present design strategies for the dec-
imation unit. In particular, we consider the optimal approach
and three alternative procedures for designing the decimation
unit of the novel reduced-rank filtering scheme, where the com-
mon framework is the use of parallel branches with B switching
decimation patterns. The design of D(i) is constrained such
that the elements of the matrix are either 0s or 1s. This means
that in our proposed approach the decimation unit simply keeps
or discards samples, leading to a very simple implementation.

The exhaustive decimation pattern Dopt for the proposed
scheme can be obtained considering all possible design patterns.
It selects the optimal pattern according to

bopt = arg min
1≤b≤B

|ξb(i)|2, (19)

where an exhaustive procedure that selects D samples out of M
possible candidates is performed. The total number of patterns
B is equal to

B = M · (M − 1) . . . (M −D + 1)︸ ︷︷ ︸
D terms

=
M !

(M −D)!
=

(
M
D

)
.

We can view this procedure as a combinatorial problem that has
M samples as possible candidates for the first row of Dopt and
M −m+1 samples as candidates for the following D− 1 rows
of Dopt is considered. The quantity m denotes the mth row of
the matrix Dopt. The exhaustive decimation scheme described
above is, however, too complex for practical use because it re-
quires D permutations of M samples for each symbol interval
and carries out an extensive search over all possible patterns.
Therefore, a decimation scheme that renders itself to practical
and low-complexity implementations is of great interest.
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To this end, we consider a general framework for sub-optimal
decimation schemes with rank D = M/L, decimation factor L
and B parallel branches as described by the structure:

Db =




0 . . . 0︸ ︷︷ ︸
r1 zeros

1 0 0 0 0 . . . 0 0 0

...
...

...
...

...
...

...
...

...
...

...
...

0 0 . . . 0︸ ︷︷ ︸
rm zeros

1 0 0 0 . . . 0 0 0

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 . . . 0︸ ︷︷ ︸
rD zeros

1 0 . . . 0︸ ︷︷ ︸
(M−rD−1) zeros




,

(20)
where m (m = 1, 2, . . . , D) denotes the m-th row and rm is

the number of zeros chosen according to the following proposed
alternative decimation patterns:
A. Uniform (U) Decimation with B = 1. We make rm =
(m − 1)L and this corresponds to the use of a single branch
(B = 1) on the decimation unit (no switching and optimization
of branches), and is equivalent to the scheme reported in [23].
B. Pre-Stored (PS) Decimation. We select rm = (m − 1)L +
(b− 1) which corresponds to the utilization of uniform decima-
tion for each branch b out of B branches and the different pat-
terns are obtained by picking out adjacent samples with respect
to the previous and succeeding decimation patterns.
C. Random (R) Decimation. We choose rm as a discrete uni-
form random variable, which is independent for each row m out
of B branches and whose values range between 0 and M − 1.

IV. ADAPTIVE ALGORITHMS

In this section we describe LMS and RLS algorithms [1] that
jointly and iteratively estimate the parameters of the interpola-
tor filter, the decimation pattern and the reduced-rank filter of
the proposed scheme. The computational complexity of the
proposed scheme equipped with the LMS and the RLS algo-
rithms is detailed and compared with existing methods. We also
present automatic rank adaptation algorithms for adjusting the
ranks/lengths of v(i) and w(i), and an algorithm for determin-
ing the minimum number of branches necessary to achieve a
pre-specified performance.

A. LMS algorithms

In order to derive LMS algorithms for the proposed scheme,
we consider the following cost function

J
(v(i),D(i),w̄(i))
MSE = E[|d(i)− vH(i)<T

o (i)DT (i)w̄∗(i)|2].
(21)

The decimation pattern D(i) is optimized according to the in-
stantaneous error at branch b

eb(i) = d(i)− w̄H(i)Db(i)<o(i)v∗(i), (22)

and the optimal branch is selected according to:

bopt = arg min
1≤b≤B

|eb(i)|2, (23)

Then we employ the following quantities for the adaptation of
v(i) and w̄(i):

D(i) = Dbopt(i), r̄(i) = r̄bopt(i) and e(i) = ebopt(i) (24)

where r̄(i) = D(i)<o(i)v∗(i). Taking the instantaneous gra-
dient terms of (21) with respect to v(i) and using the gra-
dient descent rules [1], [2] for the interpolator v(i + 1) =
v(i)− η∇vJ

(v(i),D(i),w̄(i))
MSE , we get the update rule for v(i)

v(i + 1) = v(i) + ηe∗(i)up(i), (25)

where up(i) = <T
o (i)DT (i)w̄∗(i). Taking the instanta-

neous gradient terms of (21) with respect to w̄(i) and us-
ing the gradient descent rules [1], [2] w̄(i + 1) = w̄(i) −
µ∇wJ

(v(i),D(i),w̄(i))
MSE yields the update rule for w̄(i):

w̄(i + 1) = w̄(i) + µe∗(i)r̄(i), (26)

where e(i) = d(i) − w̄H(i)r̄(i), the quantities µ and η are
the step sizes for w̄(i) and v(i), respectively. The LMS algo-
rithms for the proposed structure described in this section have
a computational complexity O(D + NI). In fact, the proposed
structure trades off one LMS algorithm with complexity O(M)
against two LMS algorithms with complexity O(D) and O(NI),
operating simultaneously with a switching decimation scheme.

B. RLS algorithms

In order to derive RLS algorithms for the proposed scheme
we consider the LS cost function given in (12) and follow a sim-
ilar approach to the proposed LMS algorithms. The decimation
pattern D(i) is chosen according to the a priori error at branch b

ξb(i) = d(i)− w̄H(i− 1)Db(i)<o(i)v∗(i− 1), (27)

and the optimal branch is selected according to:

bopt = arg min
1≤b≤B

|ξb(i)|2, (28)

Then we employ the following quantities for the adaptation of
v(i) and w̄(i):

D(i) = Dbopt(i), r̄(i) = r̄bopt(i) and ξ(i) = ξbopt(i) (29)

In order to compute parameter estimates and avoid the inversion
of R̄(i) required in (15), we use the matrix inversion lemma
(MIL) [1], define Pu(i) = R̄−1

u (i) and the gain vector Gu(i)
as:

Gu(i) =
α−1Pu(i− 1)u(i)

1 + α−1uH(i)Pu(i− 1)u(i)
, (30)

and thus we can rewrite Pu(i) as

Pu(i) = α−1Pu(i− 1)− α−1Gu(i)uH(i)Pu(i− 1) (31)

By rearranging (30) we have Gu(i) = α−1Pu(i − 1)uk(i) −
α−1Gu(i)uH(i)Pu(i− 1)u(i) = Pu(i)u(i). Using the LS so-
lution in (12) and the recursion pu(i) = αpu(i−1)+u(i)d∗(i)
we arrive at

v(i) = v(i− 1) + Gv(i)ξ∗(i) (32)

where the a priori estimation error is described by ξ(i) = d(i)−
vH(i − 1)u(i) = d(i) − w̄H(i − 1)r̄(i). Similar recursions
for the reduced-rank filter w̄(i) can be devised by using (16).
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To avoid the inversion of R̄(i) we use the MIL again, define
P(i) = R̄−1(i) and the gain vector G(i):

G(i) =
α−1P(i− 1)r̄(i)

1 + α−1r̄H(i)P(i− 1)r̄(i)
, (33)

and thus we can rewrite P(i) as

P(i) = α−1P(i− 1)− α−1G(i)r̄H(i)P(i− 1) (34)

By rearranging (33) we have G(i) = α−1P(i − 1)r̄(i) −
α−1G(i)r̄H(i)P(i − 1)r̄(i) = P(i)r̄(i) . Using the LS solu-
tion in (12) and the recursion p(i) = αp(i− 1) + r̄(i)d∗(i) we
obtain

w̄(i) = R̄−1(i)p̂(i) = αP(i)p(i− 1) + P(i)r̄(i)d∗(i). (35)

Substituting (34) into (35) yields:

w̄(i) = w̄(i− 1) + G(i)ξ∗(i), (36)

The RLS algorithm for the proposed scheme trades off a
computational complexity of O((M)2) against two RLS algo-
rithms operating simultaneously with a switching decimation
scheme, with complexity O((D)2) and O(N2

I ), respectively,
with D and NI << M , as will be explained in the subsequent
sections.

C. Computational Complexity

Here we illustrate the computational complexity of the pro-
posed structure and algorithms. In Table I we show the compu-
tational complexity required by the proposed and existing algo-
rithms. The proposed JIDF scheme with the LMS trades off
a computational complexity of O((M)) required by the full-
rank LMS against two LMS algorithms operating simultane-
ously with complexities O((D)) and O(NI). With respect to
the RLS, the JIDF trades off the complexity O((M)2) required
by the full-rank RLS against two RLS algorithms operating si-
multaneously with complexity O((D)2) and O(N2

I ). If the de-
signer chooses a small NI and B and the decimation factor L
sufficiently large then the complexity can be greatly reduced as
the filter’s rank D = M/L is inversely proportional to L. The
MWF technique has a complexityO(DM̄2), where the variable
dimension of the vectors M̄ = M − d varies according to the
orthogonal decomposition and the rank d = 1, . . . , D. The AVF
method with non-orthogonal auxiliary vectors [20] has a com-
plexity O((DM)2).

In Fig. 2 we show curves which describe the computational
complexity in terms of the arithmetic operations (additions and
multiplications) as a function of the number of received samples
M . The curves indicate that a significant computational advan-
tage of the proposed scheme over the full-rank design is verified
for the RLS algorithms. In comparison with the existing MWF
and AVF reduced-rank techniques, the proposed JIDF scheme is
substantially less complex.

D. Automatic Rank Adaptation of Filters

The performance of the algorithms described in the previous
subsections depends on the ranks D and NI . Unlike prior meth-
ods for rank selection which utilize MWF-based algorithms [13]

TABLE I
Computational complexity of algorithms.

Number of operations per symbol
Algorithm Additions Multiplications

Full-rank-LMS 2M 2M + 1

Full-rank-RLS 3(M − 1)2 + M2 + 2M 6M2 + 2M + 2

JIDF-LMS (B + 1)(D) + 2NI (B + 2)D

JIDF-RLS 3(D − 1)2 + 3(NI − 1)2 6(D)2 + 6N2
I

+(D − 1)NI + NIM + (D)2 +DNI + 2

+N2
I + (B + 1)D + 2NI +(B + 2)D + NI

MWF-LMS D(2(M̄ − 1)2 + M̄ + 3) D(2M̄2 + 5M̄ + 7)

MWF-RLS D(4(M̄ − 1)2 + 2M̄) D(4M̄2 + 2M̄ + 3)

AVF D((M)2 + 3(M − 1)2)− 1 D(4(M)2 + 4M + 1)

+D(5(M − 1) + 1) + 2M +4M + 2
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Fig. 2. Complexity in terms of arithmetic operations against number of received
samples (M).

or AVF-based recursions [21], we focus on an approach that
jointly determines based on the LS criterion the lengths of the
two filters v(i) and w̄(i), namely, NI and D. In particular, we
present a method for automatically selecting the ranks of the al-
gorithms based on the exponentially weighed a posteriori least-
squares type cost function described by

C(w̄(D),v(NI), D) =
i∑

l=1

αi−l
∣∣d(l)−w̄H, (D)(l)D(l)<o(l)v∗, (NI)(l)|2,

(37)
where α is the forgetting factor, w̃(D)(i − 1) is the reduced-
rank filter with rank D and v(NI)(i) is the interpolator filter
with rank NI . For each time interval i and a given decima-
tion pattern and B, we can select D and NI which minimizes
C(w̄(D),v(NI), D) and the exponential weighting factor α is
required as the optimal rank varies as a function of the data
record. The proposed rank adaptation algorithm that chooses
the best lengths Dopt and NIopt for the filters v(i) and w̄(i),
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respectively, is given by

{Dopt, NIopt} = arg min
NImin≤n≤NImax

Dmin≤d≤Dmax

C(w̄(d),v(n), D) (38)

where d and n are integers, Dmin and Dmax, and NImin and
NImax are the minimum and maximum ranks allowed for the
reduced-rank filter and the interpolator, respectively. Note that
a smaller rank may provide faster adaptation during the initial
stages of the estimation procedure and a slightly greater rank
usually yields a better steady-state performance. Our studies
reveal that the range for which the ranks D and NI of the pro-
posed algorithms have a positive impact on the performance of
the algorithms are limited, being from NImin = 3 to NImax = 6
for the interpolator and from Dmin = 3 to Dmax = 8 for the
reduced-rank filter recursions. These values are rather insensi-
tive to the system load (number of users), to the processing gain
and work very well for all scenarios examined. In the simula-
tions section, we will illustrate how the proposed rank adapta-
tion algorithm performs.

Another possibility for rank adaptation is the use of the cross-
validation (CV) method reported in [21]. This approach selects
the filters’ lengths that minimize a cost function that is estimated
based on observations (training data) that have not been used in
the process of building the filters themselves as described by

CCV(w̄(D),v(NI), D) =
i∑

l=1

αi−l
∣∣d(l)−w̄H, (D)

(i/l) (l)D(l)<o(l)v
∗, (NI)
(i/l) (l)|2,

(39)
We consider here the same ”leave one out” approach as in [21].
For a given data record of size i, the CV approach chooses the
filters v(i) and w̄(i) that perform the following optimization

{Dopt, NIopt} = arg min
n∈{1,2,...}
d∈{1,2,...}

CCV(w̄(D),v(NI), D), (40)

The main difference between the two algorithms presented lies
in the use of CV, which leaves one sample out in the process, and
use of the constraint on the allowed filter lengths. In the simula-
tions, we will compare the two rank adaptation algorithms and
discuss their advantages and disadvantages.

E. Automatic Selection of the Number of Branches

The goal of this subsection is to present an algorithm for auto-
matically selecting the number of branches necessary to achieve
a pre-specified performance. For each time interval i, we can
select B which minimizes the instantaneous branch cost

Cbranch(w̄(i), D(i),v(i)) =
∣∣eb(i)|2 (41)

where eb(i) = d(i) − w̄H(i)D(i)<o(i)v∗(i) is the error sig-
nal for each branch. The proposed algorithm for automatically
selecting the number of branches is given by

Bs(i) = arg min
1≤b≤Bmax

Cbranch(w̄(i), D(i),v(i))

subject to Cbranch(w̄(i),v(i), D(i)) ≤ ε
(42)

where b is an integer and Bmax is the maximum number of
branches allowed for the JIDF scheme, respectively, Bs is the

number of branches required to attain the desired performance
and ε is the pre-specified performance. The algorithm given in
(42) determines the minimum number of branches necessary to
achieve a pre-determined performance ε according to the cost
function defined in (41). It iteratively increases the number of
branches by one until the pre-determined performance ε is met.
The parameter ε can be chosen as a function of the MMSE with
a penalty allowed by the designer. An important measure that
arises from this algorithm is the average number of branches
Bavg = 1/Q

∑Q
i=1 Bs(i) with Q being the data record, which

illustrates the savings in computations of the branches.

V. ANALYSIS OF THE PROPOSED METHOD AND
CONVERGENCE ISSUES

In this section, we conduct an analysis of the proposed
method and its convergence issues. Specifically, we study the
existence of solutions and the convergence properties of the pro-
posed scheme.

The method leads to an optimization problem with multi-
ple solutions. Therefore, the convergence of the algorithms is
not guaranteed to the global minimum since local minima may
be encountered by the proposed LMS and RLS algorithms. It
should be mentioned, however, that the proposed algorithms
were extensively tested for many applications. It was verified
in these experiments that the algorithms always converge to ap-
proximately the same filter values irrespective of the initializa-
tion. This suggests that the problem may have multiple global
minima or that every point of minimum is a point of global min-
imum.

Another key feature of the proposed method is that it em-
ploys a combination of discrete and continuous optimization
techniques, which make its convergence study extremely diffi-
cult. Even though the necessary conditions for the optimization
algorithms are met [29], [30] and the cost functions used for de-
riving LMS and RLS algorithms are continuously differentiable,
the discrete nature of the decimation and the patterns used make
its theoretical analysis highly challenging. This proof is beyond
the scope of this paper remains an interesting open problem.

A. Existence of Solutions

Here, we focus on the existence of the solutions to the pro-
posed optimization problem and examine the characteristics of
the critical points. For notation simplicity, we remove the index
i from the filters and decimation matrix. In order to study the
existence of solutions we consider the associated SES expres-
sions in (17) and (18). We note that points of global minimum
of

J (v,D,w̄)
LS =

i∑

l=1

αi−l|d(l)− vH<T
o (l)DT w̄∗|2

can be obtained by

vopt = arg min
v

JLS(v,D,γ(v,D))

whereJLS(v,D, γ(v,D)) = JLS(v) = εd−p̄H(i)R̄−1(i)p̄(i)
and

wopt = γ(vopt,D)
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or

wopt = arg min
w̄
JLS(β(w̄,D),D, w̄)

and

vopt = β(w̄opt,D)

At a minimum point the cost function JLS(v,D, γ(v,D))
equals JLS(β(w̄,D),D, w̄) and the minimum SES for the
proposed structure is achieved. We further note that since
JLS(v) = JLS(tv), for every t 6= 0, then if v? is
a point of global minimum of JLS(v) then tv? is also a
point of global minimum. Therefore, points of global mini-
mum (optimum interpolator filters) can be obtained by v? =
arg min||v||=1 JLS(v). Since the existence of at least one point
of global minimum of JLS(v) for ||v|| = 1 is guaranteed by
the theorem of Weierstrass [29], [30], then the existence of (in-
finite) points of global minimum is also guaranteed for the cost
function in (12). This establishes the existence of the solution
of the optimization problem. Because at a minimum point (17)
equals (18), the designer can consider only one of the parameter
vectors, either w̄ or v, for analysis purposes.

B. Convergence Properties

Let us now study the convergence properties of the proposed
scheme and least-squares (LS) design. With respect to global
convergence, a sufficient but not necessary condition is the con-
vexity of the cost function in (12), which is verified if its Hessian
matrix is positive semi-definite, that is aHHa ≥ 0, for any vec-
tor a. To illustrate the properties of the proposed method, we
firstly consider the minimization of (12) with fixed interpolators
and decimators. Such optimization leads to the following Hes-
sian

H =
∂

∂w̄H

(JLS(.))
∂w̄

=
i∑

l=1

αi−lSD(l)r(l)rH(l)SH
D(l)

=
i∑

l=1

αi−lD(l)<o(l)v∗vT <H
o (l)DH(l)

=
i∑

l=1

αi−lr̄(l)r̄H(l) = R̄(i),

(43)

which is positive semi-definite and ensures the convexity of
the cost function for the case of fixed interpolators. Note that D
does not affect the convexity. Consider now the joint optimiza-
tion of the interpolator v and receiver w̄ through an equivalent
cost function to (12):

J̃LS(z) =
i∑

l=1

αi−l|b(l)− zHB(l)z|2] (44)

where B(l) =
[

0 0
D(l)<o(l) 0

]
is an (NI + D) × (NI +

D) matrix and contains the contribution of the decimator Db(i).

The Hessian (H) with respect to z = [wT vT ]T is

H =
∂

∂zH

∂(J̃LS(.))
∂z

=
( i∑

l=1

αi−l(zHB(l)z− b(l))BH(l)
)

+
( i∑

l=1

αi−l(zHBH(l)z− b∗(l))B(l)
)

+
( i∑

l=1

αi−lB(l)zzHBH(l)
)

+
( i∑

l=1

αi−lBH(l)zzHB(l)
)
.

(45)

By examining the Hessian matrix H we note that the third and
fourth terms yield positive semi-definite matrices given by

aH
( i∑

l=1

αi−lB(l)zzHBH(l)
)
a ≥ 0

and

aH
( i∑

l=1

αi−lBH(l)zzHB(l)]a
)
≥ 0

with z 6= 0, whereas the first and second terms are indefinite
matrices. Thus, the cost function cannot be classified as convex.
However, for a gradient search or Newton-type algorithm, a de-
sirable property of the cost function is that it shows no points of
local minimum, i.e., every point of minimum is a point of global
minimum (convexity is a sufficient, but not necessary, condition
for this property to hold). In order to verify that, we carried out
studies that indicate that there is no local minima. Firstly, for
a given set of parameters and conditions the algorithms always
converge to the same minimum value. Secondly, if we consider
the cost function in (12) with scalar and real parameters, we get

JLS(w,D, v) = (b−w D r v)2 = b2−2b w D r v+(w D r v)2

where r is a constant. By choosing v (the ”scalar” interpolator)
fixed and D equal to 1, it is evident that the resulting function

JLS(w,D = 1, v) = (b− w c)2

where c is a constant is a convex one. In contrast to that, for
a time-varying scalar interpolator v the curves shown in Fig. 3
indicate that the function is no longer convex but it also does not
exhibit local minima. The problem at hand can be generalized to
the vector case, however, we can no longer verify the existence
of local minima due to the multi-dimensional surface.

VI. SIMULATIONS

In this section, we evaluate the proposed JIDF method and
algorithms in terms of signal-to-interference-plus-noise ratio
(SINR) in an application to DS-CDMA systems. We also assess
the bit error rate (BER) of the JIDF scheme and algorithms and
compare them with the full-rank [3], the MWF [15], [13], the
AVF with non-orthogonal auxiliary vectors [20] and the MMSE,
that assumes the knowledge of the channels and the noise vari-
ance.
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Fig. 3. Contour plots showing that the function JLS(w, D, v).

A. DS-CDMA System and Linear Reduced-Rank Receivers

Let us consider the uplink of a symbol synchronous DS-
CDMA system with K users, QPSK modulation, N chips per
symbol and Lp propagation paths [3]. We assume that the de-
lay is a multiple of the chip rate, the channel is constant dur-
ing each symbol interval and the spreading codes are repeated
from symbol to symbol. The received signal after filtering by
a chip-pulse matched filter and sampled at chip rate yields the
M -dimensional received vector

r(i) =
K∑

k=1

Akbk(i)Ckhk(i) + η(i) + n(i), (46)

where M = N + Lp − 1, n(i) = [n1(i) . . . nM (i)]T is the
complex Gaussian noise vector with zero mean and covariance
matrix E[n(i)nH(i)] = σ2I. The user k symbol is bk(i) and is
assumed to be drawn from a general constellation. The ampli-
tude of user k is Ak(i) and η(i) is the intersymbol interference
(ISI) for user k. The M × Lp convolution matrix Ck that con-
tains one-chip shifted versions of the signature sequence for user
k expressed by sk = [ak(1) . . . ak(N)]T and the Lp × 1 vector
h(i) with the multipath components are described by:

Ck =




ak(1) 0
...

. . . ak(1)

ak(N)
...

0
. . . ak(N)




,hk(i) =




hk,0(i)
...

hk,Lp−1(i)


 .

(47)
In this model, the ISI span and contribution η(i) are functions of
the processing gain N and Lp. We consider an uplink scenario
and synchronous signals for simplicity. The system employs
random sequences of length N = 32 and 64. All the chan-
nels are modelled as time-varying multipath channel according
to Clarke’s model [32] that is parameterized by the normalized
Doppler frequency fDT , where fD is the Doppler frequency
and T is inverse of the symbol rate. We assume Lp = 9 as an
upper bound, which means r(i) has M = N +Lp−1 = 40 and

M = 72 taps, respectively. In this case, the ISI corresponds to 3
symbols namely, the current, previous and successive symbols.

The reduced-rank linear receiver design corresponds to de-
termining an FIR filter w̄(i) =

[
w̄0(i) w̄1(i) . . . w̄D−1(i)

]T

with D coefficients and a M ×D projection matrix SD(i) that
provides an estimate of the desired symbol as given by

b̂(i) = sgn
(
<

[
w̄H(i)SH

D(i)r(i)
])

+ sgn
(
=

[
w̄H(i)SH

D(i)r(i)
])

= sgn
(
<

[
x(i)

])
+ sgn

(
=

[
x(i)

])
,

(48)

where the operators <(·) and =(·) select the real and imaginary
parts, respectively, and sgn(·) is the signum function. The quan-
tity x(i) = w̄H(i)SH

D(i)r(i) is the output of the reduced-rank
filtering scheme and receiver for the user of interest. In what
follows, we will assume that user 1 is the user of interest and
we will measure several performance metrics for assessing the
performance of the proposed JIDF scheme.

B. Adjustment of Filter Parameters

In most adaptive filtering schemes, it is necessary to adjust
parameters such as step size and forgetting factor. In the pro-
posed JIDF scheme, a key issue is the setting of the number of
taps or the rank of the filters w̄(i) and v(i) used. We have con-
ducted experiments in order to obtain the most adequate rank
for the interpolator v(i), with values ranging from 3 to 8 and
for the reduced-rank filter w̄(i) with values ranging from 1 to
16. It should be remarked that using values beyond that range
was unnecessary since it did not increase the performance. We
consider experiments where the channels have 3 paths with rela-
tive gains at 0,−3 and−9 dB, the coefficients are obtained with
Clarke’s model [32] and the spacing between paths is computed
with a discrete random variable between 1 and 2.
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Fig. 4. SINR performance against rank (D) for the analyzed schemes using
LMS and RLS algorithms.

The results in Figs. 4 and 5 for a wide range of scenarios in-
dicate that performance is good for a small range of the number
of taps in w̄(i) and v(i). While the JIDF scheme is not able to
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construct a good subspace projection with only 1 or 2 elements
in v(i) and w̄(i), there is no improved modelling and the adap-
tation becomes slower when the size becomes reasonably large
(greater than 6). Thus, for this reason and to keep the complexity
low we adopt NI = 3 and D = 5 for the next few experiments
since these values yield the best performance.
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Fig. 5. SINR performance against rank (NI ) for the analyzed schemes using
LMS and RLS algorithms fdT = 0.0001.

C. Performance with Number of Branches and Decimation
Schemes

In this part, we evaluate the performance in terms of the SINR
of the proposed JIDF scheme and algorithms for different dec-
imation schemes and the impact of the number of branches on
performance. We compare the JIDF scheme and algorithms with
the full-rank, the MWF [13], and the AVF [20]. The channels
have 3 paths with relative gains at 0, −3 and −9 dB, the coef-
ficients are obtained with Clarke’s model [32] and the spacing
between paths is computed as in the first experiments.
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Fig. 6. SINR performance versus number of symbols with different decimation
schemes for B = 12 and LMS algorithms.

In order to assess the proposed decimation methods, we com-
pute the SINR performance of the JIDF scheme with the uni-
form (U-DEC), the random (R-DEC), the pre-stored (PS-DEC)
and the optimal (OPT-DEC) decimation schemes. The results,
shown in Fig. 6, indicate that the proposed scheme with the
optimal decimation (OPT-DEC) achieves the best performance,
followed by the proposed method with pre-stored decimation
(PS-DEC), the random decimation system (R-DEC), the uni-
form decimation (U-DEC), the AVF, the MWF and the full-rank
approach. Due to its exponential complexity, the optimal dec-
imation algorithm is not practical and the PS-DEC is the one
with the best trade-off between performance and complexity.
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Fig. 7. SINR performance against B with RLS algorithms and PS-DEC.

In the next experiment, we evaluate the effect of the num-
ber of decimation branches B on the SINR performance of the
JIDF scheme with RLS algorithms for various ranks D with a
data support of 500 QPSK symbols and the PS-DEC decimation
approach. The results, depicted in Fig. 7, show that the perfor-
mance of the JIDF scheme is improved and approaches the opti-
mal MMSE estimator, which assumes that the channels and the
noise variance are known, as B is increased. Note that the pro-
posed JIDF scheme and algorithms show excellent performance
for a wide range of fdT values, as verified in our studies.

D. Performance with Automatic Rank and Branch Adaptation

In the next examples, illustrated in Figs. 8 and 9, we assess
the performance of the proposed JIDF scheme with the auto-
matic rank and branch adaptation algorithms described in Sec-
tion IV. The channel models are the same as in the previous ex-
periments.

The evaluation of the rank adaptation algorithms is shown in
Fig. 8, where we consider the JIDF scheme with LMS algo-
rithms, B = 12, Dmin = 3, Dmax = 8, and NImin = 3 and
NImax = 6. We have one JIDF configuration using NI = 3
and D = 3, a second configuration with NI = 6 and D = 8,
the proposed rank adaptation algorithm and the extension of the
CV-based rank adaptation algorithm of [21]. The results indicate
that the proposed mechanism allows the JIDF scheme to achieve
fast convergence and excellent steady state performance, which
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Fig. 8. SINR performance against number of symbols.

is close to the optimal MMSE. The performance of the proposed
mechanism is very close to the extension of the CV-based tech-
nique of [21]. An advantage of the proposed rank adaptation
algorithm over the extension of [21] is that it reduces the num-
ber of possible ranks to be used by the filters by constraining
them in a pre-selected range.
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Fig. 9. SINR performance against number of symbols.

The evaluation of the branch adaptation algorithms is shown
in Fig. 9 for an identical scenario to Fig. 8. We consider the
JIDF scheme with LMS algorithms and the rank adaptation al-
gorithm for different values of B, and the proposed branch adap-
tation algorithm. The parameter ε was set equal to 5% greater
than the MMSE and Bmax = 16 for the experiment. The re-
sults indicate that the proposed branch adaptation mechanism al-
lows the JIDF scheme to achieve approximately the same perfor-
mance of the JIDF scheme with the rank adaptation mechanism
and B = 12 with an average number of branches Bavg = 6.7.
In what follows, we will consider the automatic rank and branch
adaptation mechanisms for the JIDF with the same parameters

used here and the rank adaptation mechanisms proposed in [13]
for the MWF and in [21] for the AVF.
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Fig. 10. BER performance against number of symbols.

The BER performance against the number of symbols is il-
lustrated in Fig. 10. The curves show that the reduced-rank
methods significantly outperform the full-rank receiver and the
best performance is obtained by the proposed JIDF scheme. In
particular, the JIDF with both the LMS and the RLS outperforms
the remaining schemes and approaches the MMSE performance.
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Fig. 11. BER performance versus (a) Eb/N0 (b) number of users.

In the last experiment, we consider the BER performance
against Eb/N0 and the number of users, as depicted in Fig. 11.
The BER is measured for data records of 1500 QPSK symbols
and a scenario where the receivers employ pilot signals for es-
timating their parameters with LMS and RLS algorithms. The
results show that the JIDF scheme with both LMS and RLS al-
gorithms achieves a BER performance very close to the optimal
MMSE, that assumes known channels, is followed by the AVF,
the MWF-RLS and the full-rank. Specifically, the JIDF can save
up to 4 dB in Eb/N0 as compared to the AVF and the MWF-RLS
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for the same BER and can accommodate up to 6 more users as
compared to the AVF and the MWF-RLS for the same BER.

VII. CONCLUSIONS

An adaptive reduced-rank filtering scheme was presented and
applied to interference suppression in DS-CDMA systems. The
proposed JIDF method is based on the reduced-rank process-
ing of signals by jointly optimizing the interpolation, decimation
and filtering tasks, and consists of a combination of continuous
and discrete optimization techniques. We developed LMS and
RLS algorithms along with automatic rank and branch adapta-
tion techniques for estimating the parameters of the proposed
scheme. We also provided a discussion on the existence of mul-
tiple solutions and the convergence issues of the method and
algorithms. The results of simulations and the analysis indicate
that the proposed reduced-rank filtering scheme allows a sub-
stantially better convergence and tracking performance than ex-
isting reduced-rank and full-rank schemes. This improvement
is due to the dimensionality reduction carried out by the pro-
posed scheme that allows the use of adaptive algorithms with
very small filters. The proposed algorithms can also be applied
to other applications such as MIMO systems, equalization, GPS
jammer suppression and channel estimation. A proof of the con-
vergence of the method and the algorithms remains and interest-
ing open problem to be considered.
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