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Multiple Feedback Successive Interference Cancellation Detection for
Multiuser MIMO Systems
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Abstract—In this paper, a low-complexity multiple feedback
successive interference cancellation (MF-SIC) strategy is pro-
posed for the uplink of multiuser multiple-input multiple-output
(MU-MIMO) systems. In the proposed MF-SIC algorithm with
shadow area constraints (SAC), an enhanced interference can-
cellation is achieved by introducing constellation points as the
candidates to combat the error propagation in decision feedback
loops. We also combine the MF-SIC with multi-branch (MB)
processing, which achieves a higher detection diversity order. For
coded systems, a low-complexity soft-input soft-output (SISO)
iterative (turbo) detector is proposed based on the MF and the
MB-MF interference suppression techniques. The computational
complexity of the MF-SIC is comparable to the conventional SIC
algorithm since very little additional complexity is required. Sim-
ulation results show that the algorithms significantly outperform
the conventional SIC scheme and approach the optimal detector.

Index Terms—MU-MIMO systems, successive interference
cancellation, feedback diversity, error propagation mitigation.

I. INTRODUCTION

IN MU-MIMO systems, the optimum maximum likelihood
detection (MLD) scheme which performs an exhaustive

search of the constellation map has exponential complexity
with the increasing number of data streams (users) [1]. There-
fore, the investigation of sub-optimal low-complexity detec-
tion schemes for MU-MIMO systems that can approach the
optimal performance is of fundamental importance. The tree
search-based sphere decoding (SD) can successfully separate
each data stream with reduced complexity compared with the
MLD [2]. However, the SD still has an exponential lower
bound in complexity for a high number of data streams [3].
Linear detection (LD) [1] based on the minimum mean-square
error (MMSE) or the zero-forcing (ZF) criteria is a low-
complexity scheme but the error performance is unacceptable
due to the multiple access interference (MAI). On the other
hand, non-linear detection techniques such as the successive
interference cancellation (SIC) used in the vertical Bell Labs
layered space-time (V-BLAST) [4] have a low-complexity,
while achieving a reduced MAI than their linear counterparts.
However, these decision-driven detection algorithms suffer
from error propagation and performance degradation.

In this paper, inspired by the error propagation mitigation in
decision feedback detection [5], [6], [15]-[18], we introduce
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a novel multiple feedback SIC algorithm with a shadow
area constraints (MF-SIC) strategy for detection of multiple
users which requires low computational complexity. The MF
selection algorithm searches several constellation points rather
than one constellation point in the conventional SIC algorithm
by choosing the most appropriate point in the decision tree.
Subsequently, we select this appropriate constellation point as
the feedback. By doing so, more points in the decision tree
are considered and the error propagation is efficiently miti-
gated. The selection procedure is constrained to one selected
symbol in each spatial layer, unlike sphere decoders which
employ a search procedure for more layers that increases the
computational load. Furthermore, the shadow area constraint
(SAC) further saves computational complexity by evaluating
the quality of decisions and avoiding unnecessary multiple
feedback procedures for reliable estimates.

The MF-SIC is also combined with a multi-branch (MB)
[18] processing framework to further improve the perfor-
mance. An iterative receiver (turbo) structure is developed
for coded systems and a low-complexity soft-input soft-output
(SISO) detector is proposed based on the MF-SIC scheme.
Simulation results show that the proposed schemes signifi-
cantly outperform the conventional SIC schemes and have a
comparable performance with the single-user bound.

The contributions of this paper can be summarized as
follows: 1) A novel low-complexity MF-SIC detector is devel-
oped. 2) The MB processing is incorporated into the proposed
MF-SIC to achieve a higher detection diversity order and to
yield a close to optimal performance. 3) An iterative detection
and decoding (IDD) receiver is introduced to approach the
MAI free performance in coded systems. 4) A study of the
proposed MF-SIC and some existing detection schemes for
MU-MIMO systems is conducted.

The organization of this paper is as follows. Section II
briefly describes the MU-MIMO system model. Section III
is devoted to represent the novel MF-SIC scheme as well
as its MB processing. Section IV introduces the proposed
iterative scheme for coded uplink systems. Section V presents
the simulation results and Section VI draws the conclusions
of the paper.

II. SYSTEM AND DATA MODEL

In this section, the mathematical model of a MU-MIMO
system is given. An uplink system with 𝑁𝑅 receive antennas
at an access point (AP) and 𝐾 users equipped with a single
antenna at the transmitter end is considered. At each time
instant, the users transmit 𝐾 symbols which are organized into
a 𝐾 × 1 vector 𝒔[𝑖] =

[
𝑠1[𝑖], 𝑠2[𝑖], . . . , 𝑠𝑘[𝑖], . . . , 𝑠𝐾 [𝑖]

]𝑇
and each entry is taken from a modulation constellation
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𝒜 = {𝑎1, 𝑎2, . . . , 𝑎𝐶}, where (⋅)𝑇 denotes transpose and 𝐶
denotes the number of constellation points. The symbol vector
𝒔[𝑖] is then transmitted over flat fading channels and the signals
are demodulated and sampled at the receiver. The received sig-
nal after demodulation, matched filtering and sampling is col-
lected in an 𝑁𝑅×1 vector 𝒓[𝑖] =

[
𝑟1[𝑖], 𝑟2[𝑖], . . . , 𝑟𝑁𝑅 [𝑖]

]𝑇
,

with sufficient statistics for detection and given by

𝒓[𝑖] =

𝐾∑
𝑘=1

𝒉𝑘𝑠𝑘[𝑖] + 𝒗[𝑖] = 𝑯𝒔[𝑖] + 𝒗[𝑖], (1)

where 𝑠𝑘[𝑖] is the transmitted symbol for user 𝑘, the 𝑁𝑅 × 1
vector 𝒗[𝑖] is a zero mean complex circular symmetric Gaus-
sian noise with covariance matrix 𝐸

[
𝒗[𝑖]𝒗𝐻 [𝑖]

]
= 𝜎2

𝑣𝑰 , where
𝐸[⋅] stands for expected value, (⋅)𝐻 denotes the Hermitian op-
erator, 𝜎2

𝑣 is the noise variance and 𝑰 is the identity matrix. The
term 𝒉𝑘 represents the 𝑁𝑅×1 vector of channel coefficients of
user 𝑘, and 𝑯 is the matrix of the channel vectors for all users.
The symbol vector 𝒔[𝑖] has zero mean and a covariance matrix
𝐸
[
𝒔[𝑖]𝒔𝐻 [𝑖]

]
= 𝜎2

𝑠𝑰 , where 𝜎2
𝑠 is the signal power. The model

(1) is used repeatedly to transmit a stream of data bits which
are separated into blocks representing uses of channels. For a
given block, the symbol vector for each user 𝒔𝑘 is obtained by
mapping it into the vector 𝒙𝑘 = [𝑥𝑘,1, ..., 𝑥𝑘,𝑗 , ..., 𝑥𝑘,𝐽 ] with
the coded bits.

III. PROPOSED MF-SIC DETECTOR DESIGN

This section is devoted to the description of the proposed
MF concept and its multi-branch processing framework.

A. The Multi-Feedback Design

The structure of the MF-SIC scheme is depicted in Fig.1.
The structure considers the feedback diversity by using a
number of selected constellation points as the candidates when
a previous decision is determined unreliable. In order to find
the optimal feedback, a selection algorithm is introduced.
This selection scheme prevents the search space from growing
exponentially. The reliability of the previous detected symbol
is determined by the SAC, which saves the computational
complexity by avoiding redundant processing with reliable
decisions.

In the following, we only describe the procedure for de-
tecting 𝑠𝑘[𝑖] for user 𝑘. The detection of other user streams
𝑠1[𝑖], 𝑠2[𝑖],. . . ,𝑠𝐾 [𝑖] can be obtained accordingly. The soft
estimation of the 𝑘-th user is obtained by 𝑢𝑘[𝑖] = 𝝎𝐻

𝑘 𝒓̌𝑘[𝑖]
where the 𝑁𝑟 × 1 MMSE filter vector is given by 𝝎𝑘 =

(𝑯̄𝑘𝑯̄𝑘
𝐻
+

𝜎2
𝑣

𝜎2
𝑠
𝑰)−1𝒉𝑘 and 𝑯̄𝑘 denotes the matrix obtained

by taking the columns 𝑘, 𝑘 + 1, . . .𝐾 of 𝑯 and 𝒓𝑘[𝑖] is the
received vector after the cancellation of previously detected
𝑘 − 1 symbols. For each user, the soft estimation 𝑢𝑘[𝑖] is
checked by the SAC, which decides whether this decision is
reliable according to the metric

𝑑𝑘 = ∣𝑢𝑘[𝑖]− 𝑎𝑓 ∣, (2)

where 𝑎𝑓 denotes the constellation point which is the nearest
to the soft estimation 𝑢𝑘[𝑖] of the 𝑘-th user, described as

𝑎𝑓 = arg min
𝑎𝑓∈𝒜

{∣𝑢𝑘[𝑖]− 𝑎𝑓 ∣}. (3)
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ŝ1[i]

layer 1

layer k
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Fig. 1. A reliable interference cancellation is performed with the MF-SIC
scheme. The SAC determines the reliability of the filter output, the function
MF(⋅) generates ℒ = [𝑐1, . . . , 𝑐𝑀 ].

If 𝑑𝑘 > 𝑑𝑡ℎ where 𝑑𝑡ℎ is the predefined threshold, we say it
was dropped into the shadow area of the constellation map
and this decision was determined unreliable. In the presence
of the SAC, significant additional computational complexity
is saved, the MF-SIC scheme has a comparable complexity to
the conventional SIC scheme, as verified by our studies.

1) Decision Reliable: If the soft estimation 𝑢𝑘[𝑖] is consid-
ered reliable, a hard slice will be performed in the same way as
in the conventional SIC scheme, the estimated symbol for each
data stream 𝑠𝑘 is obtained by 𝑠𝑘[𝑖] = 𝑄(𝑢𝑘[𝑖]) where 𝑄(⋅) is
the signal quantization. The sliced symbol is considered as a
reliable decision for user 𝑘.

2) Decision unreliable: If the soft estimation is deter-
mined unreliable, a candidate vector is generated. ℒ =
[𝑐1, 𝑐2, . . . , 𝑐𝑚, . . . , 𝑐𝑀 ] ⊆ 𝒜 is a selection of the 𝑀 nearest
constellation points to the soft estimation 𝑢𝑘[𝑖]. The size of
ℒ can be either fixed or determined by the signal-to-noise
ratio (SNR). A higher SNR corresponds to a smaller 𝑀
which introduces a trade-off between the complexity and the
performance. The unreliable decision 𝑄(𝑢𝑘[𝑖]) is replaced by
𝑠𝑘[𝑖] = 𝑐𝑚opt where 𝑐𝑚opt is the optimal candidate selected
from ℒ.

The benefits provided by the MF algorithm are based on
the assumption that the optimal feedback candidate 𝑐𝑚opt is
correctly selected. This selection algorithm is described as
follows:

In order to find the optimal feedback, a set of selection
vectors 𝒃1, . . . , 𝒃𝑚, . . . , 𝒃𝑀 is defined, the number of these
selection vectors 𝑀 equals the number of constellation can-
didates we used for each unreliable decision. For the 𝑘-th
layer, a 𝐾 × 1 vector 𝒃𝑚 consists of the following elements,
(i) Previously detected symbols 𝑠1[𝑖], . . . , 𝑠𝑘−1[𝑖]. (ii) 𝑐𝑚 a
candidate symbol taken from the constellation for substituting
the unreliable decision 𝑄(𝑢𝑘[𝑖]) in the 𝑘-th layer. (iii) By
using (i) and (ii) as the previous decisions, the detection of
the following layers 𝑘 + 1, . . . , 𝑞, . . . ,𝐾-th are performed by
the nulling and symbol cancellation which is equivalent to a
traditional SIC algorithm. Therefore, we have

𝒃𝑚[𝑖] =

[𝑠1[𝑖], . . . , 𝑠𝑘−1[𝑖], 𝑐𝑚, 𝑏
𝑚
𝑘+1[𝑖] . . . , 𝑏

𝑚
𝑞 [𝑖], . . . , 𝑏𝑚𝐾 [𝑖]]𝑇 ,

(4)
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TABLE I
THE MF-SIC ALGORITHM

1: 𝝎𝑘 = (𝑯̄𝑘𝑯̄
𝐻
𝑘 + 𝜎2

𝑣𝑰)
−1𝒉𝑘, 𝑘 = 1, . . . , 𝐾

2: for 𝑘 = 1 to 𝐾 do % For each user
3: 𝑢𝑘[𝑖] = 𝝎𝐻

𝑘 𝒓𝑘[𝑖]
4: if 𝑑𝑘 > 𝑑𝑡ℎ, in shadow area
5: 퓛 = [𝑐1, 𝑐2, . . . , 𝑐𝑚, . . . , 𝑐𝑀 ]𝑇

6: for 𝑚 = 1 to 𝑀 do % Multiple Feedback
7: for 𝑞 = 𝑘 to 𝐾 do
8: 𝒓𝑚

𝑘 [𝑖] = 𝒓̌𝑘[𝑖]− 𝒉𝑘𝑐𝑚
−∑𝑞−1

𝑝=𝑘+1 𝒉𝑝𝑏
𝑚
𝑝 [𝑖]

9: 𝑏𝑚𝑞 [𝑖] = 𝑄(𝝎𝐻
𝑞 𝒓𝑚

𝑞 [𝑖])
10: end for
11: end for
12: 𝒃𝑚[𝑖] = [𝑠1[𝑖], . . . , 𝑠𝑘−1[𝑖], 𝑐𝑚, 𝑏𝑚𝑘+1[𝑖], . . .

, 𝑏𝑚𝑞 [𝑖], . . . , 𝑏𝑚𝐾 [𝑖]]𝑇

13: 𝑚opt = argmin1≤𝑚≤𝑀 ∣∣𝒓[𝑖]−𝑯𝒃𝑚[𝑖]∣∣2
14: 𝑠𝑘[𝑖] = 𝑐𝑚opt

15: else
16: 𝑠𝑘[𝑖] = 𝑄(𝑢𝑘[𝑖])
17: end if
18: 𝒓̌𝑘[𝑖] = 𝒓[𝑖]−∑𝑛−1

𝑘=1 𝒉𝑘𝑠𝑘[𝑖]
19: end for

where 𝑏𝑚𝑞 [𝑖] is a potential decision that corresponds to the use
of 𝑐𝑚 in the 𝑘-th layer,

𝑏𝑚𝑞 [𝑖] = 𝑄(𝝎𝐻
𝑞 𝒓̂𝑚𝑞 [𝑖]), (5)

where 𝑞 indexes a certain layer between the (𝑘 + 1)-th to the
𝐾-th.

𝒓𝑚𝑞 [𝑖] = 𝒓𝑘[𝑖]− 𝒉𝑘𝑐𝑚 −
𝑞−1∑

𝑝=𝑘+1

𝒉𝑝𝑏
𝑚
𝑝 [𝑖]. (6)

For each user the same MMSE filter vector 𝝎𝑘 is used for
all the candidates, which allows the proposed algorithm to
have the computational simplicity of the SIC detection. The
proposed algorithm selects the candidates according to

𝑚opt = arg min
1≤𝑚≤𝑀

∣∣𝒓[𝑖]−𝑯𝒃𝑚[𝑖]∣∣2. (7)

The 𝑐𝑚opt is chosen to be the optimal feedback symbol for
the next layer as well as a more reliable decision for the current
user. The algorithm of the proposed MF-SIC is summarized
in TABLE I.

B. MF-SIC with Multi-Branch Processing

This section presents the structure of the proposed MF-SIC
with multi-branch processing (MB-MF-SIC). The MB-MF-
SIC structure is developed based on our previous work [18]
which contains multiple parallel processing branches of SICs
with different ordering patterns.

In the 𝑙-th branch, the MF-SIC scheme successively com-
putes 𝒔𝑙[𝑖] = [𝑠𝑙,1[𝑖], 𝑠𝑙,2[𝑖], . . . , 𝑠𝑙,𝐾 [𝑖]]𝑇 , as detailed in the
previous subsection. The term 𝒔𝑙[𝑖] represents the 𝐾 × 1
ordered estimated symbol vector, which is detected according
to the IC ordering pattern 𝑻 𝑙, 𝑙 = 1, . . . , 𝐿 for the 𝑙-th branch.
The IC on the received vector 𝒓[𝑖] is given as follows:{

𝒓𝑙,𝑘[𝑖] = 𝒓[𝑖], 𝑘 = 1,

𝒓𝑙,𝑘[𝑖] = 𝒓[𝑖]−∑𝑘−1
𝑗=1 (𝑯

′)𝑗𝑠𝑙,𝑗[𝑖], 𝑘 ≥ 2,
(8)

where the transformed channel matrix 𝑯 ′ is obtained by
𝑯 ′ = 𝑻 𝑙𝑯. The term (𝑯 ′)𝑘 represents the 𝑘-th column of
the ordered channel 𝑯 ′ and 𝑠𝑙,𝑘 denotes the estimated symbol
for each data stream obtained by the MF-SIC algorithm. At
the end of each branch we can transform 𝒔𝑙[𝑖] back to the
original order 𝒔̃𝑙[𝑖] by using 𝑻 𝑙 as 𝒔̃𝑙[𝑖] = 𝑻 𝑇

𝑙 𝒔̂𝑙[𝑖]. Basically,
the MB procedure modifies the original cancellation order in
a way that the detector obtains a group of different estimated
vectors. At the end of the MB structure, the algorithm selects
the branch with the minimum Euclidean distance according to

𝑙opt = arg min
1≤𝑙≤𝐿

𝑱(𝑙), (9)

for each branch,

𝑱(𝑙) = ∣∣𝒓[𝑖]−𝑯𝒔̃𝑙[𝑖]∣∣2 = ∣∣𝒓[𝑖]−𝑯 ′𝒔̂𝑙[𝑖]∣∣2. (10)

In the MB-MF-SIC implementation, the metric 𝑱(𝑙) of each
MF-SIC branch can be obtained directly from (7). The final
detected symbol vector is

𝒔[𝑖] = 𝒔̃𝑙opt [𝑖] = 𝑻 𝑇
𝑙opt
𝒔̂𝑙opt [𝑖]. (11)

This MB scheme can bring a close-to-optimal performance,
however, the exhaustive search of 𝐿 = 𝐾! branches is not
practical. Therefore, a branch number reduction scheme was
developed, namely frequently selected branches (FSB) [18].
The FSB algorithm builds a codebook which contains the
ordering patterns for the most likely selected branches and
the required number of branches to obtain a near-optimal
performance is greatly reduced.

IV. PROCESSING WITH CODED MULTIUSER MIMO
SYSTEMS

In this section, we present the proposed MF-SIC detector for
coded systems which employ convolutional codes with IDD.
We show that a reduced number of turbo iterations can be
used with the proposed schemes as compared to previously
reported turbo multiuser detectors [8] [9].

The receiver consists of the following two stages: a SISO
detector and a set of SISO maximum a posteriori (MAP) de-
coders for the corresponding users. These stages are separated
by interleavers and deinterleavers. Specifically, the estimated
likelihoods of the convolutionally encoded bits are computed
by the detector and these estimates are deinterleaved and serve
as input to the MAP decoders. The MAP decoder generates
a posteriori probabilities (APPs) for each user’s encoded bits,
and therefore the soft estimate of the transmitted symbol
is obtained. The process discussed above is repeated in an
iterative manner.

At the output of the SISO detector the a posteriori log-
likelihood ratio (LLR) of the 𝑗-th convolutionally encoded bit
of the 𝑘-th user’s channel coding block is given by,

Λ1[𝑥𝑘,𝑗 ] = log
𝑃 (𝑥𝑘,𝑗 = +1∣𝒓)
𝑃 (𝑥𝑘,𝑗 = −1∣𝒓) , (12)

Using Bayes’s rule, Λ1(𝑥𝑘,𝑗) can be rewritten as

Λ1[𝑥𝑘,𝑗 ] = log
𝑃 (𝒓∣𝑥𝑘,𝑗 = +1)

𝑃 (𝒓∣𝑥𝑘,𝑗 = −1)
+ log

𝑃 (𝑥𝑘,𝑗 = +1)

𝑃 (𝑥𝑘,𝑗 = −1)

= 𝜆1[𝑥𝑘,𝑗 ] + 𝜆𝑝2[𝑥𝑘,𝑗 ], 𝑘 = 1, . . . ,𝐾,

(13)
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where the term 𝜆𝑝2[𝑥𝑘,𝑗 ] = log
𝑃 (𝑥𝑘,𝑗=+1)
𝑃 (𝑥𝑘,𝑗=−1) represents the a

priori information for the coded bits 𝑥𝑘,𝑗 , which is obtained
by the MAP decoder of the 𝑘-th user in the previous iteration.
The superscript 𝑝 denotes this value is obtained in the previous
iteration. For the first iteration we assume 𝜆𝑝2[𝑥𝑘,𝑗 ] = 0 for all
users. The first term 𝜆1[𝑥𝑘,𝑗 ] denotes the extrinsic information
which is obtained based on the received signal 𝒓 and a priori
information 𝜆𝑝2[𝑏𝑘,𝜏 ] where 𝜏 ∕= 𝑗. For the detector, the coded
bit extrinsic LLR for the 𝑘-th user is obtained as

𝜆1[𝑥𝑘,𝑗 ] = log

∑
𝑎𝑐∈𝒜+

𝑘,𝑗
𝑃 (𝑢𝑘∣𝑠𝑘 = 𝑎𝑐) exp(𝐿𝑎(𝑎𝑐))∑

𝑎𝑐∈𝒜−
𝑘,𝑗

𝑃 (𝑢𝑘∣𝑠𝑘 = 𝑎𝑐) exp(𝐿𝑎(𝑎𝑐))
, (14)

where 𝒜+
𝑘,𝑗 and 𝒜−

𝑘,𝑗 denotes the subsets of constellation 𝒜
where the bit 𝑥𝑘,𝑗 takes the values 1 and 0, respectively.
𝐿𝑎(𝑎𝑐) denotes the a priori symbol probability for symbol
𝑎𝑐. Since

𝑃 (𝑢𝑘∣𝑠𝑘 = 𝑎𝑐) =
1

𝜋𝜎2
𝑣

exp(
−∣∣𝑢𝑘 − 𝑠𝑘∣∣2

𝜎2
𝑣

), (15)

we rewrite (14) as

𝜆1[𝑥𝑘,𝑗 ] =

log

∑
𝑎𝑐∈𝒜+

𝑘,𝑗
exp(−∣∣𝑢𝑘 − 𝑠𝑘∣∣2/𝜎2

𝑣)
∏

(𝜏 ∕=𝑗) 𝑃 (𝑥𝑘,𝜏 )∑
𝑎𝑐∈𝒜−

𝑘,𝑗
exp(−∣∣𝑢𝑘 − 𝑠𝑘∣∣2/𝜎2

𝑣)
∏

(𝜏 ∕=𝑗) 𝑃 (𝑥𝑘,𝜏 )
,

(16)
where 𝑃 (𝑥𝑘,𝜏 ) is a priori probability of a bit 𝑥𝑘,𝜏 and obtained
by its a priori LLR as [7]

𝑃 (𝑥𝑘,𝜏 ) =
1

2
[1 + 𝑥𝑘,𝜏 tanh(

1

2
𝜆𝑝2[𝑥𝑘,𝜏 ])]. (17)

Then 𝜆1[𝑥𝑘,𝑗 ] is de-interleaved and fed to the MAP decoder
of the 𝑘-th user as the a priori information. The MAP decoder
calculates the a posteriori LLR of each code bit by using the
trellis diagram as [15]

Λ2[𝑥𝑘,𝑗 ] = log
𝑃 [𝑥𝑘,𝑗 = +1∣𝜆𝑝1[𝑥𝑘,𝑗 ; decoding]
𝑃 [𝑥𝑘,𝑗 = −1∣𝜆𝑝1[𝑥𝑘,𝑗 ; decoding]

= 𝜆2[𝑥𝑘,𝑗 ] + 𝜆𝑝1[𝑥𝑘,𝑗 ].

(18)

The output of the MAP decoder is obtained by the a priori
information 𝜆𝑝1[𝑥𝑘,𝑗 ] and the extrinsic information provided by
the decoder. The a posteriori LLR of every information bit is
also collected by the MAP decoder which is used to make the
decision of the message bit after the last iteration. The extrinsic
information obtained by the 𝐾 MAP decoders is fed back to
the SISO detector as the a priori information of all users. At
the first iteration, 𝜆1 and 𝜆𝑝2 are statistically independent and
as the iterations are performed they become more correlated
until the improvement through iterations diminishes.

The structure of the proposed MF-SIC with soft cancellation
(MF-SIC-SC) detector is described in terms of iterations.
In the first iteration, the a priori information provided by
the decoder is zero which heavily degrades the performance
of parallel interference cancellation (PIC) based detection.
Therefore, instead of using the PIC based soft cancellation
(SC/MMSE) [7] [8], in our approach, the proposed MF-SIC
algorithm is used in the first iteration to calculate the extrinsic
information and to feed it to the MAP decoders for all the
users. The soft estimates 𝑢𝑘[𝑖] is used to calculate the LLRs of
their constituent bits. We assume 𝑢𝑘[𝑖] is Gaussian, therefore,

the soft output of the SISO detector for the 𝑘-th user is written
as [15]

𝑢𝑘[𝑖] = 𝑉𝑘𝑠𝑘[𝑖] + 𝜖𝑘[𝑖], (19)

where 𝑉𝑘 is a scalar variable which is equal to the 𝑘-th
users amplitude and 𝜖𝑘[𝑖] is a Gaussian random variable with
variance 𝜎2

𝜖𝑘
, since

𝑉𝑘[𝑖] = 𝐸[𝑠∗𝑘[𝑖]𝑢𝑘[𝑖]] (20)

and
𝜎2
𝜖𝑘

= 𝐸[∣𝑢𝑘[𝑖]− 𝑉𝑘[𝑖]𝑠𝑘[𝑖]∣2]. (21)

The estimates of 𝑉𝑘[𝑖] and 𝜎̂2
𝜖𝑘

can be obtained by time
averages of the corresponding samples over the transmitted
packet.

After the first iteration, the SC/MMSE performs PIC by
subtracting the soft replica of MAI components from the
received vector as

𝒓̌[𝑖] = 𝒓[𝑖]−𝑯𝒛[𝑖], (22)

where 𝒛[𝑖] = [𝑢1[𝑖], . . . , 𝑢𝑘−1[𝑖], 0, 𝑢𝑘+1[𝑖], . . . , 𝑢𝐾 [𝑖]] and
a filter is developed to further reduce the residual interference
as

𝝎𝑘[𝑖] = argmin
𝝎𝒌

𝐸{∣𝑠𝑘[𝑖]− 𝝎𝐻
𝑘 𝒓[𝑖]∣2}, (23)

where the soft output of the filter is also assumed Gaussian.
The first and the second-order statistics of the symbols are
also estimated via time averages of (20) and (21). The MF-
SIC processing is only applied in the first iteration of the IDD
receiver, the proposed MF + selection is introduced in the SIC
step to yield refined estimation of symbols. As for MB-MF-
SIC-SC, the best MF-SIC-SC branch is selected to provide
symbol and bit estimates of the coded information.

V. SIMULATIONS

The bit-error-rate (BER) performance of the MF-SIC and
MB-MF-SIC is compared with the existing detection algo-
rithms with uncoded systems and a different number of users.
For channel coded systems, we simulate the IDD schemes
with the PIC based SC detector [8] and compare it with the
SIC-SC which uses SIC for the first iteration and the SC
is performed for the following iterations [10] and MF aided
SIC-SC detectors (MF-SIC-SC) as well as its multiple-branch
version (MB-MF-SIC-SC). The computational complexity for
the proposed detection algorithms is also shown in this section.

Let us consider the proposed algorithms and all their coun-
terparts in the independent and identically-distributed (i.i.d)
random flat fading model and the coefficients are taken from
complex Gaussian random variables with zero mean and unit
variance. As the channel code, we employ a convolutional
code with the rate 𝑅 = 0.5 and constraint length 3. For each
user, 497 message bits are encoded with 𝑔 = (7, 5)oct and 1000
coded bits are interleaved as a transmitting block, these bits
are modulated to 500 QPSK symbols with anti-gray coding.
We also assume that the conventional SIC and MF-SIC are
ordered by the same decreased SNR for a fair comparison.

Overloaded systems represent a worst case situation for
receivers because of the high level of interference. In practice,
it is very unlikely to have a sufficient number of receive an-
tennas for decoupling the spatial signal [17]. In Fig.2 a system
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Fig. 2. Uncoded MU-MIMO system with 𝐸𝑏/𝑁0 = 12dB, 𝑁𝑅 = 4.
The proposed MF-SIC and MB-MF-SIC approach the maximum likelihood
performance with 4 users. In the overloaded case, the MB-MF-SIC approaches
the SD with small performance loss with 6 users.
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Fig. 3. BER against SNR for a 4 user system with 16-QAM modulation
over flat fading, the shadow area threshold has an impact on the slop of the
curves.

with overloaded transmitting users for uncoded transmission
is considered. We use 𝑁𝑅 = 4 receive antennas in the AP and
the 𝐸𝑏/𝑁0 = 12 dB at the receiver end.

The FSB codebook [18] was designed to construct the
transformation matrices for MB processing. In this case, [1,2]
for 𝐿 = 2 and [1,2,3,5] for 𝐿 = 4. The elements in the FSB
codebook indicate the indices of the patterns in the optimum
codebook which can be computed by the function PERMS()
in MATLAB. Other parameters are set as 𝑑𝑡ℎ = 0.5, and
𝑀 = 4. As for the SD, we implement the standard SD [11]
to achieve the optimal MLD performance, the radius 𝑑𝑆𝐷 is
chosen to be a scaled version of the noise variance [2]. The
LD and the lattice-reduction aided SIC (LR-SIC) [12] are also
compared in this plot.

Another simulation is carried out with a higher level mod-
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Fig. 4. Complexity in terms of arithmetic operations against the transmit
antennas, the proposed MB-MF-SIC scheme has 𝐿 times the complexity of
the MF-SIC which has a comparable complexity with the conventional SIC.
𝑀 = 4, 𝑑𝑡ℎ = 0.5, 𝐿 = 4.

ulation 16-QAM with 4 users. The SNR against BER curves
are plotted in Fig.3, where we use 𝑀 = 2, 4, 8. The threshold
are 𝑑𝑡ℎ = 0.05, 0.15, 0.2 and we consider a different number
of branches 𝐿 = 2, 6 for MB-MF-SIC.

In Fig.4, the complexity is given by counting the required
complex multiplications as the number of users increases.
Each MF-SIC branch has a complexity slightly above the
SIC while it achieves a significant performance improvement.
We also compared the complexity in terms of the average
number of floating-point operations (FLOPS) required per
symbol detection by simulations. A simulation performed
with the Lightspeed toolbox [13] and 𝐸𝑏/𝑁0 = 12 dB has
shown that for a 16-QAM system with 8 users, the MF-SIC
algorithm requires only 2938 FLOPS and a MB-MF-SIC with
9 branches requires 26442 FLOPS while a fixed complexity
SD (FSD) [14] requires 75120 FLOPS. FSD is one of the
lowest complexity SD that we know.

For a 4 × 4 system and 𝐸𝑏/𝑁0 = 16 dB, the MF-SIC
employs the the SAC procedure, the MF concept and the
selection algorithm. This leads to the processing of only 6.1%
on average over the layers of the estimated symbol with
the MF and selection algorithm, whereas for the remain-
ing symbols, the conventional quantization is performed by
𝑠𝑘[𝑖] = 𝑄(𝑢𝑘[𝑖]). In terms of processing for each layer, the
MF-SIC requires processing 13.34% of the symbols in the first
layer, followed by 5.21%, 2.51% and 3.15% for the remaining
3 layers, respectively.

For the coded system, the BER against the number of
iterations is depicted in Fig.5. We use 𝐾 = 8 times 500 QPSK
symbols transmitted over a Rayleigh fading channel, which are
collected by 𝑁𝑅 = 8 antennas. Compared with the previously
reported SC and SIC-SC, the proposed MF-SIC-SC and MB-
MF-SIC-SC schemes with 2 turbo iterations can obtain a better
BER performance than other schemes with 4 iterations, the
decoding delay is reduced. Fig.6 shows the simulation with
perfect and imperfect channel estimation, where a least squares
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Fig. 6. Convolutional coded system with 𝐾 = 8 users. The proposed
detectors have significant performance gains compared with the SC and SIC-
SC detector in their first iteration with both perfect (solid line) and imperfect
channel information (dash line).

(LS) algorithm is used to estimate the channel weights. We
employ a training sequence with 40 symbols which are known
at the receiver and the forgetting factor is 𝜆𝐿𝑆 = 0.998. The
single-user BER performance describes the performance in an
interference free scenario. We can see from this plot that after
3 iterations the slope of the MU-MIMO performance curves
are almost the same as the single-user curve with 3 dB (MF
𝑑𝑡ℎ = 0.5 𝑀 = 4) and 2 dB (MB-MF 𝐿 = 6) performance
loss.

VI. CONCLUSIONS

A low-complexity interference suppression strategy has
been developed by introducing multiple constellation points

as candidate decisions, and a cost-effective selection proce-
dure has been devised to prevent the searching space from
growing exponentially. A multi-branch processing scheme
has also been proposed to enhance the performance of the
MF proceeding. Furthermore, we have devised the proposed
detectors with IDD and investigate their performance in MU-
MIMO systems. The results have shown that proposed iterative
detectors approach the single-user performance bound with a
lower decoding delay.
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