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Abstract—In this paper, we consider a multihop wireless sensor WSNs. In a cooperative WSN, nodes relay signals to each
network with multiple relay nodes for each hop where the other in order to propagate redundant copies of the same
amplify-and-forward scheme is employed. We present algorith- gignq5 to the destination nodes. Among the existing relaying

mic strategies to jointly design linear receivers and the power .
allocation parameters via an alternating optimization approach schemes, the amplify-and-forward (AF) and the decode-and-

subject to different power constraints which include global, local forward (DF) are the most popular approaches [3], [4]. In the
and individual ones. Two design criteria are considered: the AF scheme, the relay nodes amplify the received signal and

rst one minimizes the mean-square error and the second one reproadcast the ampli ed signals toward the destination nodes.
maximizes the sum-rate of the wireless sensor network. We In the DF scheme, the relay nodes rst decode the received

derive constrained minimum mean-square error and constrained . | d th ) . s to the destinati
maximum sum-rate expressions for the linear receivers and the signals an en regenerale new signais to the destination

power allocation parameters that contain the optimal complex nodes subsequently.
ampli cation coef cients for each relay node. An analysis of the Some power allocation methods have been proposed for
computational complexity and the convergence of the algorithms \WSNs to obtain the best possible signal-to-noise ratio (SNR)
is also presented. Computer simulations show good performance or best possible quality of service (QoS) [5], [6] at the desti-
of our proposed methods in terms of bit error rate and sum- . L . '
rate compared to the method with equal power allocation and nauo_ns. By adjusting appropriately the power levels u_f,ed .for
an existing power allocation scheme. the links between the sources, the relays and the destinations,

Index Terms—Minimum mean-square error (MMSE) criterion,  signi cant performance gains can be obtained for a given
maximum sum-rate (MSR) criterion, power allocation, multihop  power budget. Most of the research on power allocation for
transmission, wireless sensor networks (WSNs), relays WSNs are based on the assumption of perfect synchronization
and available channel state information (CSI) at each node. A
| INTRODUCTION WSN is said to have full CSI when all of its nodes havg

) access to accurate and up-to-date CSI. When full CSI is

Recently, wireless sensor networks (WSNs) have attractgch:ianie to all the nodes, the power of each node can be

a great deal of research interest because of their uniqy&imaily allocated to improve the system ef ciency and lower
features that allow a wide range of applications in the areas;gf, outage probability [7] or bit error rate (BER) [8], [9].
defence, environment, health and home [1]. WSNs are usuallyj, \wsNs some power allocation problems can be for-

composed of a large number of densely deployed sensigateq as centralized or distributed optimization problems
devices which can transmit their data to the desired destingyiect 1o power constraints on certain groups of signals. For
tion through multihop relays [2]. Considering the' tradltlonqlhe centralized schemes [10], [11], a network controller is
wireless networks such as cellular systems, the primary goality,ired which is responsible for monitoring the information
such systems is to provide high QoS and bandwidth ef ciencys ihe whole network such as the CSI and SNR, calculating the
The base stations have easy access to the power supply githum power allocation parameters of each link and sending
the mobile user can replace or recharge exhausted batterieg, i, 1 all nodes via feedback channels. This scheme consid-
the handset [1]. However, power conservation is getting MOLes 4| the available links but it has two major drawbacks. The
important, especially for WSNs. One of the most importanis one is the high computational burden and storage demand

constraints on WSNS is the low power consumption requirgt the network controller. The second one is that it requires

ment as sensor nodes carry limited, generally irreplaceablegigni cant amount of control information provided by feed-

power sources. Therefore, low complexity and high energy i channels which leads to a loss in bandwidth ef ciency.
ef ciency are the most important design characteristics @y, the distributed schemes [12], each node only needs to
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is employed to enhance the coverage of WSNs. By usififne main contributions of this paper can be summarized as:
multihop transmissions, the rapid decay of the received signal) Constrained MMSE expressions for the design of

which is caused by the increased transmission distance can be linear receivers and power allocation parameters for
overcome. Moreover, pathways around the obstacles between multihop WSNs. The constraints include the global,
the source and destination can be provided to avoid the signal local and individual power constraints.

shadowing [15]. Several works about power allocation of mul- 2y Constrained MSR expressions for the design of linear
tihop transmission systems have been proposed in [16]-[20]. receivers and power allocation parameters for multi-
The work reported in [16] develops a cross-layer model for hop WSNs subject to local power constraints.
multihop communication and analyzes the energy consump3)  Alternating optimization algorithms that compute the
tion of multihop topologies with equal distance and optimal linear receivers and power allocation parameters in
node spacing. Centralized and Distributed schemes for power 1) and 2) to minimize the mean-square error or
allocation are presented to minimize the total transmission maximize the sum-rate of the WSN.

power under a constraint on the BER at the destination in [17]4) Analysis of the computational complexity and the
and [18] In [19], two Optlmal power allocation schemes are convergence of the proposed Optimization a|go_
proposed to maximize the instantaneous received SNR under rithms.

short-term and long-term power constraints. In [20], the outagerpea rest of this paper is organized as follows. Section i

probability is considered as the optimization criterion to deriv&escribes the general multihop WSN system model. Section
the optimal power aIIocat_ion schemes under a given pOWI?Irdevelops three joint MMSE receiver design and power al-
budget for both regenerative and non-regenerative SyStemMYycation strategies subject to three different power constraints.

In this paper, we consider a general multihop WSN Whe@ection IV develops the joint MSR receiver design and power

thg 'A.‘F relaylpg scher_ne IS empl_oyed. The proposed Strateg%%cation strategy subject to local power constraints. Section
o jointly design the Ilngar receivers and the power aI[ocaqupl contains an analysis of the computational complexity and
parameters that contain the optimal complex ampli catiog,q convergence. Section VI presents and discusses the sim-

coef cients for each relay node via an alternating optimizatio[r} ation results, while Section VIl provides some concluding
approach [21], [22]. Two kinds of linear receivers are designe marks

the minimum mean-square error (MMSE) receiver and the
maximum sum-rate (MSR) receiver. They can be considered
as solutions to constrained optimization problems where the
objective function is the mean-square error (MSE) cost func- Consider a generah-hop wireless sensor network (WSN)
tion or the sum-rate (SR) and the constraint is a bound on tw&h multiple parallel relay nodes for each hop, as shown in
power levels among the relay nodes. Then, the constrairfeid. 1. The WSN consists My source noded\, destination
MMSE or MSR expressions for the linear receiver and theodes and\; relay nodes which are separated imo 1
power allocation parameter can be derived. The major novelfyoups:N1, N2, ... , N, 1. The index refers to the number

in these strategies presented here is that they are applicalfl@odes after a given phase of transmission starting @ith

to general multihop WSNs with multi source nodes and deand going up tan 1. The proposed optimization algorithms
tination nodes, as opposed to the simple two-hop WSNs withthis paper refer to a particular instance, for which the roles
one pair of source-destination nodes [5], [23], [24]. Unlike thef the nodes acted as sources, relays and destinations have
previous works on the power allocation for multihop systentseen pre-detemined. In subsequent time slots these roles can
in [16]-[20], in our work, the power allocation and receivebe swapped so that all nodes can actually work as potential
coef cients are jointly optimized. The joint strategies weraources. We concentrate on a time division scheme with
proposed for a two-hop WSN with multiple relay nodes iperfect synchronization, for which all signals are transmitted
our previous work [25]. In order to increase the applicabilitand received in separate time slots. The sources rst broadcast
of our investigation, in this paper, we develop joint strategigbe Ny 1 signal vectos which containdNg signals in parallel

for general multihop WSNs. They can be considered as @mthe rst group of relay nodes. We consider an amplify-and-
extension of the strategies proposed for the two-hop WSksward (AF) cooperation protocol in this paper. An extension
and more complex mathematical derivations are presenténl.other cooperation protocols is straightforward. Each group
Moreover, different kinds of power constraints can be comf relay nodes receives the signals, ampli es and rebroadcasts
sidered and compared. For the MMSE receiver, we preséném to the next group of relay nodes (or the destination
three strategies where the allocation of power level across tiades). In practice, we need to consider the constraints on
relay nodes is subject to global, local and individual powehe transmission policy. For example, each transmitting node
constraints. Another fundamental contribution of this work igould transmit during only one phase. In our WSN system,
the derivation of a closed-form solution for the Lagrangiawe assume that each group of relay nodes transmits the signal
multiplier () that arises in the expressions of the powdp the nearest group of relay nodes (or the destination nodes)
allocation parameters. For the MSR receiver, the local powairectly. We can use a block diagram to indicate the multihop
constraints are considered. We propose a strategy that empM§8N system as shown in Fig. 2. LEt denote theN; No
iterations with the Generalized Rayleigh Quotient [27] tehannel matrix between the source nodes and the rst group
solve the optimization problem in an alternating fashion. Sonoé relay nodesHy denote theN,, N 1 channel matrix
preliminary results of these work have been reported in [28]Jetween thdm  1)th group of relay nodes and destination

Il. MuLTiIHOP WSN SYSTEM MODEL



Source Nodes Relay Nodes Destination Nodes Phasd: (I =3:4;,:::m 1)

N N, N, N,. N,
Xi = Hi 1A 1y 1+ Vi, 6
Vo RafLoY] Lo Ty A T )
T T o] = 1o T T n = v
o O j> o { At the destination nodes, the received signal can be ex-
’ ) ’ \ pressed as
. . . d= H4Am 1¥m 1+ Va; 8)
Y,O,Y Y,O,Y Y,O,Y v.vherev. is a zero-mean circularly symmetric c_:omplex gddi-
J tive white Gaussian noise (AWGN) vector with covariance
I [ [Feedback matrix 2l. The matrix A; = diagfa;1;a;2;:5ain, 0 is

Channel a diagonal matrix whose elements represent the ampli ca-

Fig. 1. Anm-hop WSN withN( source noded\N, destination nodes and tion C(.)ef Clen.t Of.zeaCh .rela_g of theth gro.l;p' T;he matrix

N relay nodes. Fi = diagfE(jx;;1j9); E(jxi;2]9); = E(jxin;j9)g 2 denotes
the normalization matrix which can normalize the power of the
received signal for each relay of thi group of relays. Please
note that the property of the matrix vector multiplication

Vi Ay = Ya will be used in the next section, whei¢ is the

p diagonal matrix form of the vector anda is the vector form
S om H, of the diagonal matrixA. At the receiver, a linear detector
is considered where the optimal lter and optimal ampli -

cation coef cients are calculated. The optimal ampli cation
Feedback A coef cients are transmitted to the relays through the feedback
Channel . ..
channel. The block marked with a Qfepresents a decision
device. In our proposed designs, the full CSI of the system is
assumed to be known at all the destination nodes. In practice,
a fusion center [28] which contains the destination nodes is
responsible for gathering the CSI, computing the optimal linear
Iters and the optimal ampli cation coef cients. The fusion
center also recovers the transmitted signal of the source nodes

Fig. 2. Block diagram of the multihop WSN system.

nodes, andH; ;; denote theN; N; ; channel matrix
between two groups of relay nodes as described by

3 2 3 2 3 and transmits the optimal ampli cation coef cients to the relay

hs.1 hi 11 nodes via a feedback channel.

hs;2 hm 12 hi 12
Hs = . Ly Ha= : v Hio1o= : ; 1ll. PROPOSEDJOINT MMSE DESIGN OF THERECEIVER

h ' h : h : AND POWERALLOCATION

S m ANm ' l;N‘(l) In this section, three constrained optimization problems are
where hg; = [hsj 1;hsj 225 hsjn o] for j = 1;2;:5 Ny proposed to describe the joint design of the linear receW®r (
denote the channel coef cients between the source nodes &4 the power allocation paramete) Subject to a global,
the jth relay of the rst group of relay noded)y 1; = local and individual power constraints. They impose different
o 15 1:0m 14255 0m 1, 4] fOr j = 1;2; :::’; N, Power limitations on all the relay nodes, each group of relay
denote the channel coef cients between (e 1)th group nodes and each relay node, respectively. The assumptions
of relay nodes and thith destination node. Further;, 1; = of these power constraints could determine the degrees of
i 1 hi a2 mnh mn, ] forj = 1;250N; deﬁotes freedom for allocating the power among the relay nodes which

3 H s [IEERE] s i1 y y seny

the channel coef cients between tife  1)th group of relay will affect the performance and the lifetime of the networks.

nodes and théth relay of theith group of relay nodes. The . . .
received signal at theth group of relay nodesx() for each A. MMSE Design with a Global Power Constraint

phase can be expressed as: We rst consider the case where the total power of all the
Phase 1: relay nodes is limited td®y. The proposed design can be
X1 = HeS+ vy ) formulated as the following optimization problem
. e — H H 27.
y; = Fixa; (3) [Wopt y@1;0pt s +iis Am 1;opt] =arg W;alr:r:]:!;nam . Elks W™ dk<];
1'¢ 1
Phase 2: subjectto P, = Pr
X2 = Hi2A1y; + V2, (4) i=1
Y2 = FoXa; ®) ®)

where( )" denotes the complex-conjugate (Hermitian) trans-
pose,P; is the transmitted power of thegh group of relay



nodes, an®®; = Nj.1 a . In (9), we employ the equality as

the constraint other than the inequality because it is obvious
that the more available total power can be used the better.

performance can be achieved, which means that even if we

the constraint to be an inequality, the best performance will be
achieve when the power is set to be the maximum bound (i.e.

Pr). In addition, for such optimization problems it is easiefnere
to derive algorithmic solutions for equality constraints rather !

than inequality constraints.

To solve this constrained optimization problem, we adopt an

Similarly, fori =2;3;::m 1, we have
H H
@ e wy (T wwra e N a s
ser”i 1 @1 1 @1 1
=0
(14)
a’ _ r1YlHH FCAY Hg: (15
@, =Y k 1kk Ak d - (15)
1 k=i
Let
v H H AH
Bi 1= Hk 1;ka Ak: (16)

k=i

alternating optimization approach whose global convergenggan we get
has been established in [21] and [22] so that the global

minimum value can be achieved. We modify the MSE co8t 1;opt
function using the method of Lagrange multipliers [29] which

yields the following Lagrangian function
1
L=Eks WHdK’]+ ( Niaala
i=1

Pr)

=E(s's) E(@d"ws) E(s'wWHd)+ E(d" wwHd)
¢ 1
+ ( Niad'a Pr):
i=1
(10)
By xing a;;::;am 1 and setting the gradient df in (10)

with respect to the conjugate of the ItaV equal to zero,
where() denotes the complex-conjugate, we get

Wopt :[E(ddH )] 'E(ds™)
= HoAm 1E(Ym ¥R AR HE +
HeAm 1E(Ym 18'):

The optimal expression fa, 1 is obtained by equating the
partial derivative ofL with respect toa,,, ; to zero

i
2
ol

1
(11)

Q a" a" H
= E W E WWwW"™d
@, 1 (@m 1 o+ (@'m 1 )
+ Nm an 1

E(YH (HYws)
+ E[YH (HYWWH (HgYm 1am 1+ vg)]
+ Nm am 1
=0:
(12)

Therefore, we obtain
am 1opt S[E(YH HEWWHHGY, 1)+ Ny 1] 12
E(YH JHYws)
=[Hg WW" Hy E(Yp 1¥m 1) +Nm 1]°

[HiW E(ym 18") U
(13)

s[E(YH B tHYWWMHGBM Y 1)+ Ny 111
E(Y? B 1HY ws)

=[Bi 1HGWW™HaBI | E(y; 1yi'q) +Ni 111
Bi 1HfW E(y; 18") ul:

(17)
From (13) and (17), we conclude that
aiopt S[E(YMBiHYWWHH BN YY)+ Niyy 1] 2
E(YF B HY Ws) 8
=[BiHg WW T HyB'  E(yiyf') + Niwg 1] 1
[BIHfW E(y;s") u]
where
B = ka=i11 H wFEAS fori=1:2m5m 2
[ fori = 1
19)

Please see the Appendix to nd the expressions Fof
E(y;y!'), and E(y;s™). The expressions in (11) and (18)

depend on each other. Thus, it is necessary to iterate them

with an initial value ofa (i =1;2;::;;m 1) to obtain the

solutions.
The Lagrange multiplier can be determined by solving
w1
Ni+l a-iljopt a; opt = PT: (20)
i=1
Let
.= E(YPBHY wwH HBM Y)) (21)
and
z = E(YMBiHY ws): (22)
Then, we get
& =( i+ N 1) 'z (23)
When is a real value, we have
[( i+Nisa D) 7 =[C #Nisg DFTP=( (+ N 1) 1
(24)

where denotes the Hadamard (element-wise) product and

u=[1;1;::1].



Equation (20) becomes (18) and is given by

X 1 a;opt =[BiHY WWHHgBH  E(y;y") + Nisg 1] 1t
Niss 20 ( +Nisz 1) 2 +Njsx 1) 1z = Pr: (25 o ' -
B i+0Z ( *Nizz ) *( i*Nja1 1) 7 T: (25) BHYW E(ys) ul:

34
Using an eigenvalue decomposition (EVD), we have (34)
1 o6 where
. =QQ . (26) B = Qﬂliil HE L FRAR; fori=1;2:5m 2
where ; = diagf i1; i2;:5 im ;0509 consists of ' I fori = 1
eigenvalues of ; and M; = minfNg;N;;Ny,g. Then, we (35)
get . The Lagrange multiplier ; can be determined by solving
i+ Njsg 1=Qi( i+ Nijsx DQ ™ 27
i i+1 Q|( i i+1 )Q| ( ) N+ ai'joptaiiopt = PT;i i=1;2;:om 1 (36)
Therefore, (25) can be expressed as ) . . .
) Following the same steps as in Section IIl.A, we ob(@an 1)
X f 2M; gth-order polynomials in ;
Nia 2! Qi N 1) PQ Tz = Pri (28) 9 i |
i=1 i
Using the properties of the trace operation, (28) can be writt}a_n1 Niva ( iy *Nisx i) “Ci(j;j )= Pris i =12 05m L
as (37)
14 1

Niatr ( i+ N 1) ?Q 'zZ'Q = Pr: (29)
i=1

De ning Ci = Q 1, 2 Q,, (11) becomes C. MMSE Design with Individual Power Constraints

X 1N Thirdly, we consider the case where the power of each relay
Nis1 ( iy + Nisz ) 2Ci(ij ) = Pr: (30) node is limited to some valu@ri; . The proposed method can
i=1 j=1 be considered as the following optimization problem
Since ; is a matrix with at most ranM;, onIHy theHrst Mi [Wopt;azopt; i 8m 10pt] = arg _min Elks WM dk?];
columns ofQ; span the column space &(Y[" BiHj ws)" Wiagam 1
which causes the lagN; M;) columns ofz' Q; to become subject toP;j = Prjj ; i =1;2:5m 1, j =1;2;:5N;;
zero vectors and the lagiN; M;) qg'agonal elements of (38)

. m 1
Ci are zero. Therefore, we obtain the ;-, ~ 2Migth-order o0 Pi; is the transmitted power of thigth relay node in

polynomial in the ith group, andP;; = Nij.1 & a&; . Using the method
X 1y of Lagrange multipliers once again, we have the following
Nis1 ( ij + Nisz ) 2Ci(j;j ) = Pr: (31) Lagrangian function
i=1 j=1 X 1YW
L= E[kS WH dk2]+ iij (Ni+1 ai;]- aj;j PT;i;j )I
B. MMSE Design with Local Power Constraints i=1j=1 (39)

Secondly, we consider the case where the total power Fdllowing the same steps as described in Section IIl.A, we get
the relay nodes in each group is limited to some vdPgg. the same optimal expression #f as in (11), and the optimal
The proposed method can be considered as the followiegpression for the ampli cation coef cient
optimization problem X

_ oo ge Biopt =L (i )+ Niva iy ] Yz() i(:Dai I;
[Wopt; @;0pt s 135@8m 10pt] =a@rg —min  E[ks W™ dk]; 1211 6]
W;ag ;i an 1 (40)
subject toP; = Pry;; i =1;2,m5m 1, wherel = f1;2;:::;N;g, ; andz have the same expression

(32) as in (21) and (22). The Lagrange multipliey; can be
whereP; as de ned above is the transmitted power of tife detérmined by solving

group of relays, an@ = Ni.1 &' &. Using the method of La- .., a & oot = Prij i=1:2umm L j =1;20N;:
grange multipliers again, we obtain the following Lagrangian Hli opt T OP " B ’ ’ ’(41)
function Table | shows a summary of our proposed MMSE designs
X 1 with global, local and individual power constraints which will
L=Eks W"dk’]+ i(Nisuaf'a  Pri): (33) e used for the simulations. If the quasi-static fading channel
i=1 (block fading) is considered in the simulations, we only

Following the same steps as described in Section Ill.A, we gated two iterations. Alternatively, low-complexity adaptive
the same optimal expression f@¥ as in (11). The optimal algorithms can be used to compute the linear receiVgg;
expression for the power allocation vectgris different from and the power allocation parameter veciQpp -



SUMMARY OF THE PROPOSEDM

TABLE |
MSE DESIGN WITH GLOBAL, LOCAL AND INDIVIDUAL POWER CONSTRAINTS

Global Power Constraint

|

Local Power Constraints Individual Power Constraint

|

Initia(lqize the algorithm by setting:
A =

For each iteration:

1. ComputeWy in (11).

2. Fori=1;2:;m 1

a) Compute ; andz in (21) and (22).
b) Calculate the EVD of ; in (26).
c) Solve in (31).

d) Computes;; ot in (18).

Initial'&e the algorithm by setting:

A le‘ﬂ I fori=1;2;::;m 1

Initializde the algorithm by setting:
o= Priij
& = N
j =1;2;55N;
For each iteration:
1. ComputeWyy: in (11).
2. Fori=1;2:;m 1
a) Compute ; andz in (21) and (22).
b) Forj =1;2;::;N;j
i) Solve i in (41).
i) Computeaj; opt in (40).

= fori=1;2;::;m 1,
For each iteration:

1. ComputeWyy in (11).

2. Fori=1;2:;m 1

a) Compute ; andz in (21) and (22).
b) Calculate the EVD of ; in (26).
c) Solve ; in (37).

d) Computes;; ot in (34).

IV. PROPOSEDJOINT MAXIMUM SuM-R

THE RECEIVER AND THE POWER ALLOCATION

In this section, we analyse the proposed joint MSR design

of the receiver and the power allocation.
the best possible SNR and QoS can
destinations. They will improve the spect
is desirable for the WSNs with the limi
node computational capacity. Only the

considered here, because of the MSR receiver we make asé
of the Generalized Rayleigh Quotient which is only suitable
to solve optimization problems with vectors. It limits the types
of power constraints. By substituting (2)-

d=Com 1S+ Cym 1Vi+ Com 1V2
+ 0+ Chn o1m 1Vm 1+ Vg

ATE DESIGN OF and

X
H

iim

Z C|’m
i=1

The expression for the sum-rate can be written as

1C 1 (49)

1 2wHow 1
By the MSR designs,SR = —log, 1+ %m = 1 106(1 + ax); (50)
be obtained at the n
rum ef ciency whichvhere 2
tation in the sensor a= — (51)
local constraints are n
wH w
= Wz (52)

(7) into (8), we geiSince% log,(1 + ax) is a monotonically increasing function
of x (a > 0), the problem of maximizing the sum-rate is
equivalent to maximizing. In this section, we consider the
case where the total power of the relay nodes in each group is

X 1 (42) limited to some valuePr;; (local constraints). The proposed
=Com 18+ Cim 1Vi * Vd; method can be considered as the following optimization prob-
i=1 lem:
where Q. H
\oiBk; ifi6j, [Wopt ; @1:0pt ;523 @m 1.0pt] =arg  max w.
Cij = P if i>]; (43) Py SEhopEy 0P waiian 1 WHZw' (53)
subject toP; = Pry; i =1;2;:;m 1
and
Bo = Hs: (44) WhereP; as de ned above is the transmitted power of the
ith group of relays, and®; = Nji; a,-“ a;. We note that the
. - . . . - . . LR . H
Bi = HijwAF  fori=1;2 m5m 2 (45) expression—2 in (53) is the Generalized Rayleigh Quotient.
Bm 1= HeAm 1Fm 1 (46) Thus, the optimal solution of our maximization problem can

be obtained:wy, is any eigenvector corresponding to the

We focus on a system with one source node for simplicity. TRgyminant eigenvalue & *

generalization to multiple sources amou

nts to performing the

optimization of the additional Iters. Therefore, the expression

of the sum-rate (SR) in terms of bps/Hz
is expressed as

H H
W Com 1Com

for aurhop WSN , . .
In order to obtain the optimal power allocation vectgg; ,

oWl ow T
# we rewrite - and the expression is given by

lW

SR_£|O 1+—§
_m [¢7] r21

whH (f iril Cim 1Gj

H

(bps/Hz) wH w _ a'Mq
wHZw — at Pa + wH Tiw,

cfori=1; 25

m 1 m 1, (54)

(47)

wherew is the linear receiver, and)" denotes the complex- where

conjugate (Hermitian) transpose. Let

— H
= COJm 1C0;m 1

M; =diagfw! Ci+1.m 1Hii +1 FigCo; 1C51;i 1

. (55)
diagf F'HE ; Clly . 1wig;

(48)



X
=diagfw! Cis1-m 1Hii+1 Fi Cv. .CH TABLE I
OISt im 1 1 'g(k_l ki ki ) (56) SUMMARY OF THE PROPOSEDMSR DESIGN WITH LOCAL POWER

CONSTRAINTS
dlagf FH H|| +1 CiH+1 ‘m 1Wi g

Initialize the alglorlthm by setting

X Ny A= gl fori=1;2mmm 1
Ti= . Ciem 1Cgm 1 (57) " Eor each iteration:

k=il 1. Compute andZ in (48) and (49).
Since the multiplication of any constant value and an eigen2. Using the QR algorithm or the power method to
vector is still an eigenvector of the matrix, we express the compute the dominant eigenvector of *

and

receive lter as denoted awop -
w, = Wopt : (58) 3.Fori=1;2;:;m 1 '
wWH T Wopt a) ComputeM; andN; in (55) and (61).
P b) Using the QR algorithm or the power method to
Hence, we obtain compute the dominant eigenvector Bf *M;,
Ny a a denoted as; .
Wi Tiw; = 1= % (59) c) To ensure the local power constrain&
o H . — Prii . — Prii .
By substituting (59) into (54), we get & opt iopt = v, COMPULER; opt Nia i a
H H M a; )
WH W a‘H & fori=1;2umm L (60) , _
whZw  a Nia the number of operations the lower the power consumption
where will be. Then, we make use of the convergence results for the
o Nit1 alternating optimization algorithms in [21], [22] and present
Ni = P + I: (61) X " .
Pri a set of suf cient conditions under which our proposed algo-

) ) HMa - ) rithms will converge to the optimal solutions.
Likewise, we note that the expressl(?ﬁu_—'a in (60) is the

Generalized Rayleigh Quotient. Thus, the optimal solution of
our maximization problem can be obtainegyy is any eigen- A- Computational Complexity Analysis

vector corresponding to the dominant eigenvalueNpfM; Table Ill and Table IV list the computational complexity per
that satis es a{'opta@;opt = ,\TT—l Here, the local power iteration in terms of the number of multiplications, additions

constraints can be satis ed by employing a normalizatiomnd divisions for our proposed joint linear receiver design
When considering the global power constrthft, there is (MMSE and MSR) and power allocation strategies. For the
BO unlque solution o ot (i=1;2:;m 1) that satisfy joint MMSE designs, we use the QR algorithm to perform
N,+1a1 opt &iopt = Pr. Thus, for this reason, we dothe eigendecomposition of the matrix. Please note that in

not conS|derthe global power constraint. The solutionsgf this paper the QR decomposition employs the Householder
anda; op: depend on each other. Therefore it is necessary ttansformation [30], [31]. The quantities, andnp denote
iterate them with an initial value o (i =1;2;::;m 1) to the number of iterations of the QR algorithm and the power
obtain the optimum solutions. method, respectively. For the computational complexity of

In this section, two methods are employed to calculate tie Table IlI, it does not include the processing of solving
dominant eigenvectors. The rst one is the QR algorithrthe equation in (31), (37) and (41), because the method with
[30] which calculates all the eigenvalues and eigenvectors afglobal power constraint, equation (31) is a higher order
a matrix. We can choose the dominant eigenvector amopglynomial whose complexity is dif cult to be quanti ed. As
them. The second one is the power method [30] which orilge multiplication dominates the computational complexity,
calculates the dominant eigenvector of a matrix. Hence, the order to compare the computational complexity of our
computational complexity can be reduced. Table Il showspgoposed joint MMSE and MSR designs, the number of
summary of our proposed MSR design with a local powenultiplications versus the number of relay nodes in each group
constraint which will be used for the simulations. If thdor each iteration are displayed in Fig. 3 and Fig 4. For the
quasi-static fading channel (block fading) is considered in thirpose of illustration, we seh = 3, No = 1, N3 = 2 and
simulations, we only need two iterations. ng = np = 10. For the MMSE design, it can be seen that
our proposed receiver with a global constraint has the same
complexity as the receiver with local constraints. In practice,
when considering the processing of solving the equation in

In this section, an analysis of the computational complexi(31), (37), the method with a global constraint will require a
and the convergence of the algorithms is developed. Weagher computational complexity than the local constraints and
rst illustrate the computational complexity requirements ofhe difference will become larger along with the increase of the
the proposed MMSE and MSR designs. We quantify theumber of hopsrq). When the individual power constraints
computational complexity of the algorithms, which require are considered, the computational complexity is lower than
given number of arithmetic operations per iteration. The lowether constraints because there is no need to compute the

V. ANALYSIS OF THE PROPOSED ALGORITHMS



eigendecomposition for it. For the MSR design, employin
the power method to calculate the dominant eigenvectors |
a lower computational complexity than employing the QI
algorithm.

VI. ANALYSIS OF THE PROPOSED ALGORITHMS

In this section, an analysis of the computational complexi
and the convergence of the algorithms is developed. We 1
illustrate the computational complexity requirements of th
proposed MMSE and MSR designs. Then, we make use of 1
convergence results for the alternating optimization algorithr :
in [21], [22] and present a set of suf cient conditions unde o Sloba consuain
which our proposed algorithms will converge to the optime —~A— Individual Constraints
solutions. 10

Number of Multiplications

2 4 6 8 10 12 14 16 18 20

A. Computational Complexity Analysis
. i . Fig. 3. Number of multiplications versus the number of relay nodes of
Table Il and Table IV list the computational compleXityour proposed joint MMSE design of the receiver and the power allocation

per iteration in terms of the number of multiplications, adstrategies.
ditions and divisions for our proposed joint linear receiver
design (MMSE and MSR) and power allocation strategie

For the joint MMSE designs, we use the QR algorithm t 10
perform the eigendecomposition of the matrix. Please nc
that in this paper the QR decomposition by the Householc
transformation [30], [31] is employed by the QR algorithms
The quantitiesng and np denote the number of iterations
of the QR algorithm and the power method, respectivel
For the computational complexity of in Table Ill, it does
not include the processing of solving the equation in (31
(37) and (41), because of the method with a global pow
constraint, equation (31) is a higher order polynomial who:
complexity is dif cult to be summarized. As the multiplication

Number of Multiplications

dominates the computational complexity, in order to compa 66— Local Constraints, OR Algorithm
the computational complexity of our proposed joint MMSE —©— Local Constraints, Power Method

. . . - 2 L L L L L L L L
and MSR designs, the r_1umber of multlphcatlons_ versus tl 10— 6 5 10 12 14 16 18 20
number of relay nodes in each group for each iteration & N =N,

displayed in Fig. 3 and Fig 4. For the purpose of illustration,

we setm =3, No =1, N3 =2 andng = np =10. For the Fig. 4. Number of multiplications versus the number of relay nodes of our
MMSE design, it can be seen that our proposed receiver Wiﬂ;?raposed joint MSR design of the receiver and the power allocation strategies.
global constraint has the same complexity as the receiver with
local constraints. In practice, when considering the processing
of solving the equation in (31), (37), the method with a gIobzﬂ M
constraint will require a higher computational complexity thaR®nditions hold:

the local constraints and the difference will become larger1) d(x;y) 0.

along with the increase of the number of hops)(When the  2) d(x;y) =0 iff x = y.
individual power constraints are considered, the computational3) d(x;y) = d(y; x).
complexity is lower than other constraints because there is4) d(x;y) d(x;y)+ d(y;z).

no need to compute the eigendecomposition for it. For thethe Haysdorff distance measures how far two subsets of a
MSR design, employing the power method to calculate thgatric space are from each other and is de ned by
dominant eigenvectors has a lower computational complexity

than employing the QR algorithm. dH (X, Y ) =max sup inf d(x;y); sup inf d(x,y)
x2X Y2Y y2y X2X

M M! R such that for anyk;y;z 2 M , the following

(62)
The proposed joint MMSE designs can be stated as an

To obtain convergence conditions, we need to de ne @ternating minimization strategy based on the MSE de ned
metric space and the Hausdorff distance that will extensively (9) and expressed as

be used. A metric space is an ordered g§¥r; d), whereM
is a nonempty set, and is a metric onM , i.e., a function

B. Suf cient Conditions for Convergence

Wi 2 arg min MSE(W;a 1); (63)



TABLE Il
COMPUTATIONAL COMPLEXITY PERITERATION OF THE JOINTMMSE DESIGNS

Power Constraint Multiplications Additions Divisions
Nm(Nm 1)(4Nm +l) =6 Nm(Nm 1)(4Nm +l) =6
+(No+ Nm 1)NZ+ N2  Np +(No+ Nm 1)NZ2 + N2 ;Np
W All +PNon tNm + Nm 1Nm +NoNm 1Nm 'u_;Z +2N0Nm Nm@BNm 1)=2
m,M2NZ  Nj + Ni (N2 +Nm 1Nm + Nm+ 0, H2N; (N2
+N0N| 1N +4N| 1Nj +2Nig +No(Nj 1 1N;j NZ+ Njg
P m 1 13 3 1 Pm o1 13 1
fng(ZN2+ SN2+ 2N;  2) mong (BN N2 ENj +1) P
Global N3+F;-‘5N0N + NoN N.+1 + N?2g N2 +3NoN?+ NoN;iNj m Mno(N; 1)g
+ i=1 fN Ni+1 + Nj+1 g Ni2 NoN; Nig
P P
Mo Mng(BNE+ 3NZ+ AN 2 MoMng(BNE N2 ING+D) P
Local N3+§N0N2+ NoN Nis1 + N?g N2 +3NoN?+ NoNiNj m Mno(Ni 1)g
+ M ZfNiNjs1 + Niju1 g N2 NoN; Nijg
.. 2 2 P m 1 2 2
Individual quJ\lI + NoN Ni+1 + N7+ NoNig iz FNoN7+ NoNiNj4g N Nig
ZfNiNjs1 + N|+19
P m 1 2 P m 1 2 P m 1
Global mOMENI(Ni 1)@N; +1)=6+ N2 +1g mOMNI(NG 1)(4N; +1) =6+ N?g moMNI@EN; 1)=2g
P P P
a Local mOMNI(NP 1)@Nj +1)=6+ N2 +1g mOMENG(N] 1)@N;j +1) =6+ N?2g m MNIBN;  1)=2g
P P P
Individual 20 MmN mUN; MmN
TABLE IV
COMPUTATIONAL COMPLEXITY PERITERATION OF THE JOINTMSR DESIGNS
Power Constraint Multiplications Additions Divisions
(N3 + N2 + INm 2 no(BN§ N2 INg+1)
Local +Nm (N 1)(4Nm +1) -6+ N2 + NiNm +Nm(Nm  1)(4Nm +1) =6 ng(Nm 1)
QR Algorithm + pm LEN; N2 + NiNj« + Nig N2 +|glle + ImllN N2 +Nm(BNm  1)=2
+ ,mzleN N+ N N2 + 12N 1N
+Ni 1Ni{Nm +4N; 1N;j +2Nig +N;i 1(N| 1)Nm N2+ Nig
w
npN2 + Nm(Nm 1)(4Nm +1) =6 NpNm(Nm 1)
Local p *NJ +NZ+ NiNm +N (Nm (@Nmp+1) =6+ N3
Power Method + m 1fN N2 + NiNjs1 + Nig +FNle + MmN N2 Nm@BNpm 1)=2
+ ["Zlsz INi+ Nj (N2 + M LN NP
+Nj 1NiNm +4Ni 1Ni +2Nig +Ni 1(Ni  1)Np N2+ Nig
1f 13N3+ 3N2+ lN_ 2 Pm 1f 13N3 N2 lN'+l
nQ(F N7+ sN7+ 3Ni 2 i=1 TN (FN; © §Ni+1) =
Local p +Ni(Nj 1)(4N;+1)=6 +Ni(N;  1)(4N; +1) =6+ NiNj+1 im:1 1an(Ni 1)
QR Algorithm + g NKNZ+3N2Z+2NiNjsg +r\|3+1 Nm p N.+1 +N; 1g +N;(3N; 1)=2g
+Njst Nm +3N; +2g+2N2 m 1f Ll Nk N2 +Nm+m 1
a +N2(| 2)+ .g+2N2 2N
P
m YnpN? m o MnpNe(Nr 1) P
Local p +Ni(Ni 1)@4N;+1)=6 +Ni(N;  1)(4N; +1)=6+ N3 m OMNiI(BN; 1)=2g
Power Method + o NKNZ+ N3 +3N2+2NiNjug N? + Nifiss + Mist Nm  Nis +Nm+m 1
+Nijs1 Nm +3N; +2g+2N2 +N; g+ LM T (Ng NP

+NA(i 2)+ N g+2N2 2Nnm

an 2 argazmin MSE(Wy;q) fori=1;2;:;m 1 (64) have the sequence of compact sef¥, g, o andfa,, gn o.

& The aim of our proposed joint MMSE designs is to nd a
where the set®V;a;, M , and the sequences of compacsequence oW, anda., (i =1;2;::;;m 1) such that
setsfw_n On o andfa,, gn o converge to the se®/ anda;, lim MSE(Win: atn: Gon: 2 an 1)
respectively. nil (65)

Although we are not given the set¥ anda, directly, we = MSE(Wopt; @1.0pt ; 82;0pt 5 3 8m  1;0pt)



. . P m 1 _ P m 1 P N —
where Wo, and a;opt  correspond to the optimal values ofindicated as 2, “Pr; = iz1 i1 Pri;j = Pr. We

W, anda;, , respectively. Equation (65) can be considered asnsider a 3-hopni=3) wireless sensor network as an example

the necessary condition of the following equations even though the algorithms can be used with any number
. ) _ ) of hops. The number of source nodddyf, two groups of
lim MSE(W,;ain ) = MSE( Wt ; &: L
il (W ) (Wopt: Biopt ) (66) relay nodesNi;N,) and destination nodedNg) are 1, 4, 4
fori=1;2;::;m 1 and 2, respectively. We consider an AF cooperation protocol.

The quasi-static fading channel (block fading channel) is
considered in our simulations whose elements are Rayleigh
andom variables (with zero mean and unit variance) and
umed to be invariant during the transmission of each packet.
n our simulations, the channel is assumed to be known
at the destination nodes. For channel estimation algorithms
for WSNs and other low-complexity parameter estimation
] algorithms, one refers to [32] and [33]. During each phase,
1)  Three-point propertyW; W a): the sources transmit the QPSK modulated packets with 1500
Foralln 1, W2W, &2a, ; and symbols. The noise at the destination nodes is modeled as
W 2 argminwzw, MSE(W; &), we have circularly symmetric complex Gaussian random variables with
] ] L zero mean. A perfect (error free) feedback channel between
(W W)+ MSE(W.a) MSE(W;a): (67) destination nodes and relay nodes is assumed to transmit the

if the other power allocation parametess, (j 6 i) are
kept constant when computirg, during the iterations. To
present a set of suf cient conditions under which the proposé
algorithms converge, we need the so-called three-point
four-point properties [21], [22]. Let us assume that there is
functionf : M M! R such that the following conditions
are satis ed:

2) Four-point property(W; a;; W; &): ampli cation coef cients.
Foralln 1, W,W2W,, a2 a,,and For the MMSE design, it can be seen from Fig. 5 that
& 2 argming 2a . MSE(W,a), we have our three proposed methods achieve a better performance than

the equal power allocation method. Among them, the method
MSE(W;&) MSE(W;a)+ f(W;W): (68) with a global constraint has the best performance whereas the

. . . ethod with individual constraints has the worst performance.
These two properties are the mathematical expressions of the

. e . This result is what we expect because a global constraint
suf cient conditions for the convergence of the alternatin : .
L ) . . rovides the largest degrees of freedom for allocating the
minimization algorithms which are stated in [21] and [22]; L .
) . . ) . power among the relay nodes whereas an individual constraint
It means that if there exists a functidn(W; W) with the ; o
. . . . provides the least. For the MSR design, it can be seen from
parameterW during two iterations that satis es the two

inequalities for the MSE in (67) and (68), the convergence g]!g- 6 that our proposed method achleves_ a better sum—.rate
erformance than the equal power allocation method. Using

our proposed MMSE designs that make use of the alternati 19, : . :
RN . power method to calculate the dominant eigenvector yields
minimization algorithm can be proved by the theorem below

a very similar result to the QR algorithm but requires a lower
TheoremLet f (W, ;a., )9 o, W;a be compact SUbseCtScomp)I/exity QR alg g
of the compact metric spad® ;d) such that )

w, "w oa, ™a (69) U
’ 10 T T T
and let MSE M M ! R be a continuous function. Let e Itivkdusl Gonghaints (Pertoct Feedack Chianne)

. . —— | i rf dback Ch )
conditions 1) and 2) hold. Then, for the proposed algorithm T Global Conataim (Perfect Feedback Chamel
— A — Individual Constraints (BSC 8bits Pe=10e-3)

we haVe \ — © — Local Constraints (BSC 8bits Pe=10e-3)

g < — % — Global Constraint (BSC 8bit Pe=10e-3)

nIli{”n MSE(Wh; ain ) = MSE( Wopt ; @:0pt )
fori=1;2;::;m 1t

Thus, equation (65) can be satis ed. A general proof of th

theorem is detailed in [21] and [22]. The proposed joir

MSR designs can be stated as an alternating maximizat

strategy based on the SR de ned in (47) that follows a simil:
procedure to the one above.

(70)

VII. SIMULATIONS

In this section, we assess the performance of our proposed o _
joint designs of the linear receiver and power allocatiofj%; > BER performance versus SNR of our proposed joint MMSE design
. ~of the receiver and power allocation strategies, compared to the equal power
methods and compare them with the equal power allocatiQiycation method.
method which allocates the same transmitting power level
equally for all links from the relay nodes. For the purpose Besides the equal power allocation scheme, a MMSE power
of fairness, we assume that the total transmitting power fallocation scheme reported in [34] where only the local power

all relay nodes in the network is the same which can l®nstraints are considered has also been used for comparison.



curves in Fig. 5 and Fig. 6 show the performance degradation
compared to the performance when using a perfect feedback
channel. To show the performance tendency of the BSC for
other values of Pe, we x the SNR at 10 dB and choose Pe
ranging from 0 tol0 2. The performance curves are shown in
Fig. 8 and Fig. 9 , which illustrate the BER and the sum-rate
] performance versus Pe of our two proposed joint designs of
] the receivers. It can be seen that along with the increase in
Pe, their performance becomes worse.

T T T
—©— Local Constraints, QA Algorithm (Perfect Feedback Channel)
0.91] —9— Local Constraints, Power Method (Perfect Feedback Channel)
— © - Local Constraints, QA Algorithm (BSC 8bits Pe=10e-3)

— € — Local Constraints, Power Method (BSC 8bits Pe=10e-3)
—%— Equal Power Allocation, QR Algorithm
—+H— Equal Power Allocation, Power Method
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Fig. 6. Sum-rate performance versus SNR of our proposed joint MSR des
of the receiver and power allocation strategies with local constraints, compa

to the equal power allocation method. g 1020
It can be seen from Fig. 7 that our proposed MMSE ar 4
MSR designs can achieve a very similar or better performan:
B - —A— Individual Constraints (BSC 8Bits)
Further advantage is that our proposed schemes only optim ! —o— Local Gonstraints (BSC 8Bits)
the relay amplifying vectors (or diagonal matrices) whereas —*— Global Constraint (BSC 8Bits)
[34] the Optlmal relay ampllfylng matrlces are needed Whlc 10730 0.601 O.E;OZ 0.603 O.E;OA 0,0‘05 O.C;OG 0,(;07 0.608 0.509 0.01
requires more feedback transmissions as well as informati Pe

exchanges among relay nodes in each group. Note that in order
to have a fair comparison, we only employ power allocatiorig- 8. BER performance versus Pe of our proposed MMSE designs when
schemes for the relay nodes and assume every source riggfaoyind the BSC as the model for the feedback channel.

has unit transmitting power in the simulations.

o MMSE Design MSR Design 1 T T T T
10 i 1 ir , M
Equal Power Allocation 0.9 H‘e_—e‘e‘e‘—e‘—e‘e——eﬂ
—*— Power Allocation Scheme in [31] k
—©O— Proposed with Local Constraints 0.8+ g
0.8} q
< 07f J
I~ 0.7 1 I
1%
= Sosf 1
« g0 ] 2
w Q S o050 il
o T T .
v 05} 1 £
I >
5 D 0.4t 1
@ 0.4t 1
0.3 b
0.3r 1
[« 0.2} | —©— Local Constraints, QR Algorithm (BSC 8bits) 4
0.2} 1 —<— Local Constraints, Power Method (BSC 8bits)
01 . . . .
107 . 01 . 0 0.002 0.004 0.006 0.008 0.01
0 5 10 0 5 10 P

SNR (dB) SNR (dB)

. . Fig. 9. Sum-rate performance versus Pe of our proposed MSR design when
Fig. 7. (a) BER performance versus SNR of our proposed MMS_E dr—{sngn @f)nploying the BSC as the model for the feedback channel.
Sum-rate performance versus SNR of our proposed MSR design with local

ower constraints and compare with the power allocation scheme in [31] and . . .
Qqual power allocation Schf;me_ P 1] Finally, we replace the perfect CSI with the estimated

channel coef cients to compute the receive Iters and power

In practice, the feedback channel cannot be error free. dllocation parameters at the destinations. We employ the
order to study the impact of feedback channel errors on tBEACON channel estimation which was proposed in [32].
performance, we employ the binary symmetric channel (BSE)g. 10 illustrates the impact of the channel estimation on
as the model for the feedback channel and quantize edbk performance of our proposed MMSE and SMR design
complex ampli cation coef cient to an 8-bit binary value (4 with local constraints by comparing it to the performance of
bits for the real part, 4 bits for the imaginary part). The errgrerfect CSI. The quantity, denotes the number of training
probability (Pe) of the BSC is xed afl0 3. The dashed sequence symbols per data packet. Please note that in these



o MMSE Design MSR Design
° ‘ ' ‘ ’ R ZHHE + 2)ER fori=1
--©:- BEACON, n=10 mouBEACON,ntzlo/ y < Fi( §HsHg nDF; ! Ny y orl _2 -
- o -BEACON.nz50 | | %9 | o peacon, n=sof | E(vivir)= . FRilHi siAi (B o9 DAY (HP 1+ B
& Perfect CSI 08| |[—o—Perfectcs ] ' fori=2;3;:5m;
‘ (73)
g |
[%] .
. g ] 2FHs; fori=1,
w z E(y;s') = ) P
- g | FiHi 1A 1E(y; 187); fori=2;3;:;m:
5 | (74)
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