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Adaptive Constrained Constant M odulus Algorithm Based
on Auxiliary Vector Filtering for Beamforming

Lei Wang and Rodrigo C. de Lamare

Abstract—A constrained constant modulus (CCM) algorithm with the
auxiliary vector filtering (AVF) techniqueisintroduced for robust adaptive
beamforming. The proposed scheme decomposes the adaptive filter into
constrained (reference vector filters) and unconstrained (auxiliary vector
filters) components. Theweight vector isiterated by subtracting the scaling
auxiliary vector from the reference vector, which are computed according
to the CCM criterion. The proposed algorithm provides an iterative ex-
changeof infor mation between thescalar factor and theauxiliary vector, re-
sulting in a faster convergence and an improved steady-state performance
as compared with existing techniques with large filters. The convergence
propertiesof the proposed algorithm areanalyzed. Simulation results show
that the proposed beamfor ming algorithm outper formsexisting techniques
and isrobust against signature mismatch problems.

Index Terms—Antenna arrays, auxiliary vector, beamforming, con-
strained constant modulus.

|. INTRODUCTION

Adaptive beamforming techniques are of central importance to sys-
tems equipped with antenna arrays to improve the reception of a de-
sired signal and to suppress interference. Adaptive beamforming has
found numerous applications in radar, sonar, and wireless communi-
cations [1]-[3]. In order to design adaptive beamformers, a number
of adaptive filtering algorithms have been reported [4]. These algo-
rithms usually exhibit a tradeoff between performance and computa-
tional complexity, and are based on different design criteria. Promi-
nent design criteria are the constrained minimum variance (CMV) and
the constrained constant modulus (CCM) due to their simplicity and
effectiveness. The CMV criterion aims to minimize the beamformer
output power while maintaining the array response on the direction of
the desired signal. The CCM criterion is a positive measure [4] of the
deviation of the beamformer output from a constant modulus condition
subject to a constraint on the array response of the desired signal.

There are several cost-effective algorithms for the design of the
adaptive beamformers. Representative examples are the stochastic
gradient (SG) and recursive least squares (RLS) [5]. Although these
methods provide a simple implementation of the beamformer, a major
shortcoming is that they require a large number of samples to reach
the steady-state when the array size is large. Besides, in dynamic
scenarios, filters with many elements usually fail or provide poor
performance in tracking signals embedded in interference and noise.
An efficient algorithm developed to address this problem is called the
multistage Wiener filter (MSWF), which was proposed with the min-
imum mean squared error (MMSE) criterion [7] and then extended to
the CMV [8] and the CCM criteria [9]. Another well-known technique
is the auxiliary vector filtering (AVF) [10] algorithm, which utilizes
an iterative approach to compute the weight solution without any
form of explicit input covariance matrix inversion, decomposition, or
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diagonalization. The CMV-based AVF algorithm and its application in
adaptive beamforming have been reported in [11], [12], respectively.

This correspondence makes two contributions. The first contribution
is the proposal of a CCM-based AVF algorithm for the design of adap-
tive beamformers. Compared with the CMV-based method [11], the
CCM criterion exploits a constant modulus property of the transmitted
signals and utilizes the deviation to provide more information for the
parameter estimation of the constant modulus constellations [9]. The
proposed structure decomposes the adaptive filter into constrained (ref-
erence vector filters) and unconstrained (auxiliary vector filters) com-
ponents. The constrained component is initialized with the array re-
sponse of the desired signal to start the iteration and ensure the con-
straint, and the auxiliary vector in the unconstrained component is iter-
ated with respect to the constant modulus criterion. The weight vector is
updated by means of suppressing the scaling unconstrained component
from the constrained part. The main difference from the CMV-based
AVF algorithm is that, in the proposed CCM-based algorithm, the aux-
iliary vector and the scalar factor depend on each other and are jointly
calculated according to the constant modulus criterion (subject to dif-
ferent constraints). It provides an iterative exchange of information be-
tween the auxiliary vector and the scalar factor and also exploits the
information about the constant modulus signals. This makes the beam-
forming algorithm more robust against uncertainties and leads to an
improved performance. The second contribution is an analysis of the
properties of the proposed algorithm and a comparison with previously
reported techniques. Specifically, we first analyze the convergence of
the auxiliary vector. Then, we establish the orthogonality of the suc-
cessive auxiliary vectors. The convergence of the weight vector to the
optimal weight solution is also verified. At last, we predict the trend of
the mean-squared error (MSE) of the CCM criterion via the analysis
and validate the result in simulations.

The rest of this correspondence is organized as follows. We outline
a system model and the problem statement in Section Il. The proposed
scheme is introduced and the CCM-AVF algorithm is developed in
Section Il1. The properties of the proposed algorithm are analyzed in
Section IV. Simulation results are provided and discussed in Section V,
and conclusions are drawn in Section VI.

Il. SYSTEM MoDEL AND CCM BEAMFORMER

Let us suppose that ¢ narrowband signals impinge on a uniform
linear array (ULA) of m (m > ¢) sensor elements. The sources
are assumed to be in the far field with directions of arrival (DOAS)

fo,...,8,—1. The received vector z € C™** can be modeled as
r=Af)s+n 1

where 8 = [fo,....0,-1]" € R represents the signal

DOAs, A(8) = [a(fo)....,a(f,_1)] € C™*2 comprises

the signal steering vectors a(fy) = [L e ™/ Xe)eosfi

e 2mim=1(d/A)eos0i]T ¢ cmX1 () = 0. 4 — 1), where \.
is the wavelength and d is the inter-element distance of the ULA
(d = X\./2 in general), s € C?%! is the source data, n € C™*!
is assumed to be a zero-mean spatially white Gaussian process, and
()T stands for transpose. To avoid mathematical ambiguities, the
steering vectors a(fy) are normalized and considered to be linearly
independents. The output of the beamformer is

y=w"z 2
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where w = [w1, ..., wn,]" € C™*! is the complex weight vector of

the beamformer, and (-)¥ stands for Hermitian transpose.
The CCM beamformer is designed based on the minimization of the

Jem(w) =E { [|;U|2 - I/]Z}, subject to w'a(fo) = ~ (3)

where v is set to consider the cost function as the expected deviation of
the squared modulus of the beamformer output to a constant and ~ is
selected to ensure the convexity of the cost function [13]. The quantity
flo is the direction of the desired signal and a(f, ) is the corresponding
steering vector. Since the optimization problem in (3) is a fourth-order
cost function, the weight vector w obtained from (3) will be a func-
tion of the previous weight vector and the beamformer output y, which
provides a positive way to exchange information between the update
of the weight vector and the estimated output and thus leads to a fast
convergence and tracking performance. The SG or RLS [5], [15] type
algorithms can be employed to calculate the weight vector for the de-
sign of the beamformer. However, they suffer from a poor convergence
and tracking performance when the dimension m is large.

11l. PrOPOSED CCM BEAMFORMER AND AVF ALGORITHM

In this section, we introduce an adaptive filtering structure with re-
spect to the CCM criterion and develop a CCM-AVF algorithm for
adaptive beamforming.

A. Proposed CCM-AVF Algorithm

In order to simplify the derivation, we make a transformation on the
constant modulus cost function in (3), which can be written as
Ju(w) =E{lyw’z -} =E{w"z-v"} @

where & = y*2 can be viewed as a new received vector to the beam-
former. From (4), we convert the constrained optimization problem in
(3) into an unconstrained one. The constraint w' a(#y) =  is already
enforced in the design by initializing wo = va(6o)/||a(60)||*. The
weight vector is iteratively computed by subtracting a scaling auxiliary

vector (unconstrained component) that is orthogonal to a(f, ) from wq
(constrained component), which yields

k

Wi = Wy — ZMQ; =Wi—1 — Uiy
=1

Q)

where g, € C™*" is the auxiliary vector with g!’a(60) = 0 and iy,
is a scalar factor to control the weight of g, . The auxiliary vector is
supposed to capture the signal components in & that are not from the
direction #,. The aim of (5) is to suppress the disturbance of the uncon-
strained component while maintaining the contribution of the signal of
interest (SOI).

From (5), it is necessary to determine the auxiliary vector g, and the
scalar factor y;. for the calculation of w;, . Fixing g,., 1+ can be obtained
by minimizing E{[w & — ] }. Substituting the second expression of
wy, in (5) into this minimization problem, computing the gradient with
respect to ux and equating it to zero, we have

97 Rwi_1 —vg['p
gf{ng

(6)

[ =

where R = E[#2"] € C™*™ and p = E[#] € C"*!,

Assuming now that g is known, the calculation of the auxiliary
vector g, should take the conditions g’ a(4y) = 0 and g;’ g, = 1 into
account. This constrained minimization problem can be transformed by
the method of Lagrange multipliers into an unconstrained one, whose
cost function is
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TABLE |
PROPOSED CCM-AVF ALGORITHM

For the time index : = 1,2,..., N.
Initialization:

wo (i) = IIZE(LG(:?()]I? ;  po(z) = small positive value.

y() = wif ()2(i); 2(i) = y (@=(0): §() = wi (1) (1)
R() = $ £ 202" () b)) = Tioy #(0)
p,(i) = 3 21 (v —9(D) ()
Iterative procedure:
Fork=1,2,....K

. v nz e uE_q(DaT(00)by(4)
gk(z) = Nkfl(l)py(z) — HG(G(J)H(’) ! a(GO)
if g, (i) = O then EXIT.
Hi\pr: . H, N2 ,:

N 9k OR(Hwr—1(1)—vgy (9p(i)
(1) = =

Hinl ) gl ()R()g ()

wy (1) = wr—1(8) — prgy (i)
Weight expression: w(i) = wx_1(4).

Jun(wy) = [E{ [wkH:l‘ - V]Q}—m {Al [g{?gk - 1] —Aggfa(eo)}
(M

where A; and ), are scalar Lagrange multipliers and the operator 23(-)
selects the real part of the argument. According to (5), computing the
gradient of (7) with respect to g,, equating it to zero and solving for
A1 and Az, we have

* o~ t*'aHH)~
i, = Hra(to) 8
e = T T wrafio0)p, ®)
‘ 1Py = oz (o)

where p, = E[(v — §)*#] € C™*! and § = w"Z. Note that p, is
the gradient of the CCM cost function in (4). The meaning of (8) is
to subtract the components from the direction 6, (i.e., the projection
(I — (a(fo)a™ (80)/|la(60)|*)]p,) and keep the unconstrained com-
ponents in g,.. The step size y;, controls the adaptation and ensures the
constraints with respect to g,.. By subtracting the scaled g, iteratively
according to (5), the weight vector w,, can be updated to maintain the
contribution of the SOI while attenuating the interference and noise.
The proposed algorithm uses an iterative way to calculate w; without
the matrix inversion.

The expressions wo, wg, pi, and g, compose the iteration of the
proposed CCM-AVF algorithm. In this procedure, & can be viewed as
a new received vector that is processed by the adaptive filter w, (kthes-
timation of w) to generate ¢, in which, wy, is determined by minimizing
the MSE between the output and the desired constant modulus condi-
tion. This principle is suitable for all the iterations with & = 1,2, .. ..
Generally, there exists a maximum value of &, i.e., kmax = K —1, that
is determined by a certain rule to stop iterations and obtain the weight
solution w = wy,,_. . A reasonable rule, which is adopted in the pro-
posed algorithm, is to terminate the iteration if g, = O isachieved. This
characteristic will be explained in the following section. Alternative
rules can be found in [12]. A summary of the proposed CCM-AVF al-
gorithm is given in Table I. It should be remarked that, for the proposed
adaptive algorithm, the weight vector should be adapted following the
incoming of the received vector at each time instant. Thus, the iteration
procedure is performed for each time index and the time index i is in-
cluded in the quantities.

B. Interpretation of the Proposed CCM-AVF Algorithm

There are several points we need to interpret in Table I. First, the
initialization is very important to the proposed method. We initialize
wq (i) to estimate g (i) and to start the iterations. Since yu.(7) and g, (i)
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depend on each other, we need a small positive value 10 (¢) to start the
calculation. Under this condition, the subscript of the scalar factor for
the calculation of g, () should be replaced by & — 1 instead of %, as
shown in Table I. R

Second, the expected quantities R, p, and p,. are not available in
practice. We use a sample-average approach to estimate them, namely,
R(i), p(i), and p,(4) in Table 1. To improve the estimation accuracy,
these quantities can be refreshed or further regularized during the itera-
tions. Specifically, we use w (¢) in the iteration step instead of wo(¢) in
the initialization to generate y(¢), and the related #(¢) and g (<), which

are employed to update the estimates R( i), i)(z’), and i;‘ (7). Compared
withawo (i), w (1) is more efficient to estimate the desired signal. Thus,
the estimates based on the current w (i) can be used to calculate the
subsequent scalar factor and the auxiliary vector.

Third, we drop the normalization of the auxiliary vector [11], [16].
The constraint conditions ensure the orthogonality between g, () and
a(fy). The orthogonality among the auxiliary vectors is not imposed.
Actually, the successive auxiliary vectors do satisfy the orthogonality.
This characteristic will be proved in the next section.

The proposed CCM-AVF algorithm employs an iterative procedure
to adjust the weight vector for each time instant. It avoids any form of
matrix inversion, decomposition, or diagonalization. From (6) and (8),
the calculations of the scalar factor and the auxiliary vector depend on
each other. It provides an iterative exchange of information between
them, which are jointly computed to update the weight vector. This
scheme leads to an improved convergence and tracking performance.
The proposed CCM design for adaptive beamforming effectively mea-
sures the expected deviation of the beamformer output from the con-
stant modulus condition and provides useful information for the pa-
rameter estimation.

IV. ANALYSIS OF THE PROPOSED ALGORITHM

In the following parts, we will analyze the characteristics of the pro-
posed CCM-AVF algorithm.

A. Convergence Analysis of the Auxiliary Vector
The proposed CCM-AVF algorithm runs k...« iterations for each
time index to update the scalar factor and the auxiliary vector. The

quantities R(7), p(i), and p, (i) can be assumed constant during the
iteration procedure. For simplicity, we drop the time index ¢ in the fol-
lowing. From (5) and (6), we have

95 Rwy. = g/ Rlwe—1 — jxg,]

N H

=g Rwi— — SE—— ©9)
Let us assume that the weight solution wyz,, .. — wepe, Where wop
is the optimal weight solution. This assumption will be verified in the
following part. In the noise free case [6], [9], [13], [14], we have y =
wx = ady, where « is a scaling parameter, do is the transmitted
data of the desired signal, and = Y% 3;Bidia(6;) with /3; being
the fading factor with respect to the Ith user, B; being the signal ampli-
tude, and d; the transmitted data of the /th user, respectively. According
to the definitions of p and 2, and considering the fact that d; is an in-
dependent random variable, we obtain [5]

ﬁ = [E[y*f] = B()E[(k*ﬁo]ﬂ(eo). (10)

According to the constraint g’ a(6a) = 0, we have g/ Rw;, = 0.
In other words, g, and w,. are R-orthogonal. Therefore,
lwe + pegell3 = llwell% + liegell%

lwill7 = llwe1 I = lleegill%- (1)
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Itis clear that {||w| 5} with & = 1,2,... is a monotonically de-
creasing sequence of non-negative numbers. Hence, ||w || 7 converges.
Besides, we have p;, # 0 since, if . = 0, there is no update of the
weight vector w,, which is in contrast with the auxiliary vector filtering
theory [11]. Thus, we have ||g,|| — 0 or g, — 0, as k increases. This
is the termination rule we utilized in the proposed algorithm to stop the
iterations. It is worth noting that g p is actually not equal to but close
to zero since p depends on y. This term provides information for the
adaptation of the scalar factor.

B. Orthogonality of the Auxiliary \ectors

Now, we prove an important characteristic of the proposed
CCM-AVF algorithm, namely, successive auxiliary vectors are or-
thogonal, i.e., g{?[g,L,JF1 =0withk = 1,..., kmax. We start the proof
from (8), omitting the normalization [11], the auxiliary vector can be
written as
. a(é’o)aH(ﬁo)

_ a(eo)aH(eo)] 5 — |:I
Py la(60)]?

lla(6o)|?
WP a(6)a" (60)/la(60)|*)]° = [T — (a(bo)a” (80)/llal8o)]I*)]

is considered in the expression.

Frem (12), we have a(fo)a (8y)
9 Jiv1 = He+19k - W

According to the definition of i)y, y, and &, we have
Py =Elv—0)"2] =E[(v—|y") y"2]
= VB()[E[(X*IB()]G»(G()) — B0|E [|(X0|2&*»’30] a(00).

0 = b [I } o (12)

]p = wip19p Dy (13)

(14)

Since g/ a(60) = 0, we conclude that g’ g, , = 0.

C. Convergence Analysis of the Weight \ector

In order to analyze the convergence of w, we need to derive the op-
timal weight solution of the CCM cost function in (3), which can be
transformed into an unconstrained cost function

Juem(w) = E{ [y = 0]} + 2 {2 [w"a(60) - 1]} @5)

where X is a scalar Lagrange multiplier. Note that v can be adjusted to
satisfy the convexity of the cost function. The related discussions can
be found in [6] and [9].

Computing the gradient of (15) with respect to w, equating it to a
null vector and solving for A, we obtain

~vR;, a(6o)
[+tzy
(o] [ i Ea— 16
Wopt aH(GO)R;;a(eo) ( )
where R.., = E[(|y|* — »)zz"].
According to the definition of p, , we have
p,=E (v —§)"2] = —~R.yw. 1n

Considering the fact that g, — 0 and the definition of g, in (8), it
implies
(1(90 )aH(Bg)

_ W)a o)l B wp — 0,
lla(60)|* ’

where we notice that the component of R.,w; is orthogonal
to a(fy) as k — oc. Thus, to prove that R,,w; converges, it
suffices to show that the projection of R.,w, onto a(4o), i.e.,
(@™ (80)R.yws /||a(60)]|*)a(fo), converges. To achieve that, we
multiply R, on both sides of (18) to obtain
a (00)R.,wi
lla(6o)|I”

k— oo (18)

as

R;/a(f) — 0, as k—oco. (19)

wi
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From (19), it implies that for a given e > 0, there exists a kmax >
0 such that for every k > kmax, We have ||w, — of R, a(t)|| <
e/|la(60)||? with gr = wi R, a(8)/||a(8)||*. Considering the fact
that [|wi. — ok R., a(6o)llllabo)]| >[l(wi — oi R,y a(60))" a(bo)]]

and the constraint wi a(6,) = ~, we have
)7 — ora” (80)R; ) a(bo)|| < . (20)
Thus, we find that
0% = a” (60) Ruyws ) as k—oo. (21)

lla(60)]]? a6y R ra(fo)

From (18) and (21), we conclude that R.,w; converges. Substi-
tuting (21) into (19) and making a rearrangement, we have

+R7, a(fo)

at (80)R. )} a(fy) (22)

lim w; =

k—oo

which verifies the convergence of wy, t0 w,p in (16). Assuming w —
wope and y = wx = ado in the noise free case, we have R,.,, =
E[(o?|do|* — v)22TT] = 7R with 7 = o?|do|* — v is a constant and
R = E[z2""][9], [13]. This approximation is also valid for sufficiently
high signal-to-noise ratios or when the noise is negligible [9], [13].
Therefore, by adjusting the parameter ~, the optimal weight solution of
the CCM criterion approaches the weight solution of the minimum vari-
ance distortionless-response (MVDR) filter [3], i.e., ||w —wnmvDr|| —
0.

D. Prediction of the Trend of MSE

In this part, we develop an expression of the MSE following the time
instant ¢ for the proposed algorithm, which can be expressed by

Jmee(i) =E [ 2]

= €min T &(l) - gmin - E [650)] a(9o)—aH(9o)|E [6w(l)]
(23)

where do(7) is the transmitted data of the desired user, €min =
Elldo()) — wip@(D)’], &min = Elwli@(Da (Hwepd, £(1) =
E[w (DHz()2 (Hw(1)], and e, (i) = w(i) — wepy = wy,,, (1) —
wWope IS the weight error vector.

From (16), the optimal weight solution w.,. of the CCM criterion
cannot be obtained analytically since it is a function of y(i), which de-
pends on the calculated weight vector w(7) (i.e., wg,,, (7)). However,
as proved in the convergence analysis of the weight vector, the optimal
weight solution of the CCM criterion approaches that of the MVDR
filter by adjusting ~, i.e., wopt = Wyvvpr. Thus, we use wnvivopr in-
stead of w., for the calculation of Jmec (i) in (23).

Considering the fact lim; o E[e.,(i)] = 0 as w(i) — wmvpr,
we have

. H
do(i) — wopy

lim Jimee (i)

1—00

= €min + lim &ex(2) (24)
where €ex (i) = £(4) — Emin IS the steady-state excess MSE. The quan-
tity £(¢) can be calculated by

&) = [w" (a(ie" (hw())] = tr[R.()R]  (25)
where R = E[z(i)z”(i)] and R, (i) =
Elwvvorwiivor] + Re, (i) with R., (i) = Ele.(i)e) (i)].
In practice, R.,, (i) can be estimated by the sample-average approach.
Note that Jmse(i) can be regarded as a prediction of the trend of
the MSE for the proposed algorithm. In the next section, we will
demonstrate that Jms.(7) is able to predict the performance for the
proposed CCM-AVF algorithm.

Elw(ih)w™(i)] =~
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Fig. 1. Output SINR versus the number of snapshots for (a) ideal steering
vector; (b) steering vector mismatch 1°.

V. SIMULATIONS

In this section, we evaluate the performance of the proposed algo-
rithm and verify the analysis in Section IV. Simulations are performed
for a ULA containing m = 40 sensor elements with half-wave-
length interelement spacing. We compare the proposed algorithm
(CCM-AVF) with the SG [5], RLS [6], MSWF [9], and AVF [11]
methods. With respect to each method, we consider the CMV and the
CCM criteria for beamforming. All the results are averaged over 1000
simulation runs. In all experiments, BPSK sources’ powers (desired
user and interferers) are 03 = ¢f = 1 and the input SNR = 0 dB
with spatially and temporally white Gaussian noise. Wesetv = v =1
for the proposed algorithm.

In Fig. 1, we evaluate the output signal-to-interference-plus-noise
ratio (SINR) performance of the proposed algorithm. It includes two
experiments. There are ¢ = 10 users, including one desired user in the
system. The scalar factor is y1 (i) = 0.01. In Fig. 1(a), we assume that
the exact DOA of the SOI is known at the receiver. The CCM-based
algorithms achieve better convergence and steady-state performance
than those of the CMV-based. The proposed CCM-AVF algorithm en-
joys faster convergence than the existing methods and the steady-state
performance, which is close to that of the MVDR filter. It should be re-
marked that the existing methods should be able to converge to the op-
timum MVDR filter. However, this will require a large number of snap-
shots. The proposed algorithm can converge to the optimum MVDR
filter performance with a reduced data record. In Fig. 1(b), we assume
that the DOA of the SOI estimated by the receiver to be 1° away from
the actual direction. Under this mismatch scenario, the SINR perfor-
mance of all the algorithms degrades. Since the CCM-based methods
exploit the constant modulus property of the transmitted signal and
measure the deviation for the parameter estimation, they are more ro-
bust to the mismatch than the CMV-based ones. The proposed algo-
rithm converges fast and reaches a superior performance to other pre-
viously reported techniques.

InFig. 2, we check the impact of the selection of the iteration number
to the performance of the existing and proposed methods. We keep
the same scenario as that in Fig. 1(a) and set the number of snapshots
N = 500. From this experiment, we find that the most adequate it-
eration number for the proposed CCM-AVF algorithm is kmax = 3,
which is comparatively lower than other AVF and MSWF algorithms,
but reach the superior performance. We also checked that this value is
rather insensitive to the number of users in the system, to the number
of sensor elements, and work efficiently for the studied scenarios. The
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Fig. 3. Output SINR versus the number of snapshots in a scenario where addi-
tional interferers suddenly enter the system.

SINR values of the algorithms should converge to the same steady-state
level as the number of iterations increases. However, the convergence
depends on the number of snapshots, namely, it requires a large number
of snapshots to converge if the number of iterations is large. In this ex-
periment, the number of snapshots is fixed at 500, which is set since
the proposed algorithm reaches the steady-state with a small number
of iterations. It illustrates the advantage of the proposed algorithm over
existing methods under the condition where the number of snapshots
is small.

In the next experiment, we evaluate the performance of the pro-
posed and analyzed algorithms in a non-stationary scenario, namely,
when the number of users changes. In Fig. 3, the scenario starts with
q = 8 users including one desired user. From the first stage (first 500
snapshots), the convergence and steady-state performance of the pro-
posed CCM-AVF algorithm is superior to other existing methods. Four
more users enter the system at the time instant i = 500. This change
makes the output SINR reduce suddenly and degrades the performance
of all the methods. The proposed CCM-AVF algorithm rapidly tracks
the change and converges to a higher value of SINR at steady-state.

Fig. 4 is carried out under the same scenario as that in Fig. 1(a) and
verifies the analysis about the prediction of the trend of the MSE. We
increase the number of snapshots to N' = 1000 and compare the MSE
result obtained via simulations in Table | with that obtained by the pre-
diction in (23). Note that we use wxrvpr [3] instead of w,pt for the
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Fig. 5. Square estimation error between the weight solution and the optimal
weight vector.

calculation of J.,.. (7). It indicates that the curve obtained with the pre-
diction agrees with that obtained via the simulation, verifying the va-
lidity of our analysis.

Finally, we show the convergence of the weigh vector for the pro-
posed algorithm to that of the MVDR filter. In order to exhibit the
convergence of the iteration procedure for each time instant, we use
the sample-average approach to estimate R for the computation of
wmvDR (¢). Note that wyvpr () is calculated following the incoming
of the received vector, which is different from wnvpr that is indepen-
dent of 7. The scenario is the same as that in Fig. 4. We evaluate the
square estimation error ||w (i) — wyvpr (7)||* against the number of
snapshots. It exhibits that the square estimation error always keeps a
relative low level which is close to zero except the first i < 40 since
the number of snapshots are not enough (i < m) to provide accurate
estimate of R. It should be remarked that in addition to convergence to
the MVDR, the proposed CCM-AVF algorithm is robust against signa-
ture mismatches. The existing CMV based algorithms do not have this
feature.

VI.

We proposed a CCM-AVF algorithm for robust adaptive beam-
forming. It exploits the constant modulus property of the transmitted
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signals to measure the expected deviation of the beamformer output
from the constant modulus condition. The proposed CCM-AVF
algorithm provides an iterative exchange of information between the
scalar factor and the auxiliary vector to update the weight vector for
improving the performance. The convergence and related character-
istics of the proposed algorithm were analyzed. Simulations were
performed to show the improved performance of the proposed method
over existing techniques and to verify the analysis.
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