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Reduced-Rank Adaptive Filtering Based on Joint
Iterative Optimization of Adaptive Filters

Rodrigo C. de Lamare, Member, IEEE, and Raimundo Sampaio-Neto

Abstract—This letter proposes a novel adaptive reduced-rank
filtering scheme based on joint iterative optimization of adaptive
filters. The novel scheme consists of a joint iterative optimization
of a bank of full-rank adaptive filters that forms the projection
matrix and an adaptive reduced-rank filter that operates at the
output of the bank of filters. We describe minimum mean-squared
error (MMSE) expressions for the design of the projection ma-
trix and the reduced-rank filter and low-complexity normalized
least-mean squares (NLMS) adaptive algorithms for its efficient
implementation. Simulations for an interference suppression ap-
plication show that the proposed scheme outperforms in conver-
gence and tracking the state-of-the-art reduced-rank schemes at
significantly lower complexity.

Index Terms—Adaptive filters, iterative methods.

I. INTRODUCTION

I N adaptive filtering [1], one can find a huge number of al-
gorithms with different trade-offs between performance and

complexity. They range from the simple and low-complexity
least-mean squares (LMS) to the fast converging though com-
plex recursive least squares (RLS) techniques. Several attempts
to provide cost-effective adaptive filters with fast convergence
performance have been made with variable step-size algo-
rithms, data-reusing, sub-band and frequency-domain schemes,
and RLS algorithms with linear complexity. A challenging
problem which remains unsolved by conventional techniques
is that when the number of elements in the filter is large, the
algorithm requires a large number of samples to reach its
steady-state behavior. In these situations, even RLS algorithms
require an amount of data proportional to [1] in stationary
environments to reach steady state, where is the filter length,
and this may lead to unacceptable convergence performance.
In dynamic scenarios, large filters usually fail or provide poor
performance in tracking signals embedded in interference.

Reduced-rank filtering [2]–[9] is a powerful and effective
technique in low sample support situations and in problems
with large filters. The advantages of reduced-rank adaptive
filters are their faster convergence speed and better tracking
performance than full-rank techniques when dealing with
large number of weights. Several reduced-rank methods and
systems have been proposed in the last several years, namely,
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eigen-decomposition techniques [3], [4], the multistage Wiener
filter (MWF) [6], [7], and the auxiliary vector filtering (AVF)
algorithm [8]. The main problem with the above techniques is
their high complexity and the existence of numerical problems
for implementation.

In this letter, we propose an adaptive reduced-rank filtering
scheme based on combinations of adaptive filters. Unlike re-
lated work on combinations of full-rank filters [10], the novel
scheme consists of a joint iterative optimization of a bank of
full-rank adaptive filters which constitutes the projection matrix
and an adaptive reduced-rank filter that operates at the output
of the bank of full-rank filters. Differently from [11], the pro-
posed scheme estimates a scalar, allows filter updates for each
successive observation, is adaptive, and has low complexity.
The essence of the proposed approach is to change the role
of adaptive filters. The bank of adaptive filters is responsible
for performing dimensionality reduction, whereas the reduced-
rank filter effectively estimates the desired signal. Despite the
large dimensionality of the projection matrix and its associated
slow learning behavior, the proposed and existing [7], [8] re-
duced-rank techniques enjoy in practice a very fast convergence.
The reason is that even an inaccurate or rough estimation of the
projection matrix is able to provide an appropriate dimension-
ality reduction for the reduced-rank filter, whose behavior will
govern most of the performance of the overall scheme. We de-
scribe MMSE expressions for the design of the projection ma-
trix and the reduced-rank filter along with simple NLMS adap-
tive algorithms for its computationally efficient implementation.

II. REDUCED-RANK MMSE PARAMETER ESTIMATION

AND PROBLEM STATEMENT

The MMSE filter is the vector , which
is designed to minimize the MSE cost function

(1)

where is the desired signal; is
the received data; and denote transpose and Hermitian
transpose, respectively; and stands for expectation. The set
of parameters can be estimated via standard stochastic gra-
dient or least-squares estimation techniques [1]. However, the
laws that govern the convergence behavior of these estimation
techniques imply that the convergence speed of these algorithms
is proportional to , the number of elements in the estimator.
Thus, large implies slow convergence. A reduced-rank algo-
rithm attempts to circumvent this limitation in terms of speed
of convergence by reducing the number of adaptive coefficients
and extracting the most important features of the processed data.
This dimensionality reduction is accomplished by projecting the
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Fig. 1. Proposed reduced-rank scheme.

received vectors onto a lower dimensional subspace. Specifi-
cally, consider an projection matrix which carries
out a dimensionality reduction on the received data as given by

(2)

where, in what follows, all -dimensional quantities are de-
noted with a ”bar.” The resulting projected received vector
is the input to a tapped-delay line filter represented by the
vector for time interval . The filter
output corresponding to the th time instant is

(3)

If we consider the MMSE design in (1) with the reduced-rank
parameters, we obtain

(4)

where is the reduced-rank co-
variance matrix, is the full-rank covariance
matrix, , and . The
associated MMSE for a rank estimator is expressed by

(5)
where is the variance of . In the Appendix , we pro-
vide a necessary and sufficient condition for a projection
with dimensions to not modify the MMSE and dis-
cuss the existence of multiple solutions. Based upon the problem
statement above, the rationale for reduced-rank schemes can be
simply put as follows. How to efficiently (or optimally) design a
transformation matrix with dimensions that projects
the observed data vector with dimensions 1 onto a re-
duced-rank data vector with dimensions 1? In the next
section, we present the proposed reduced-rank approach.

III. PROPOSED REDUCED-RANK SCHEME

Here we detail the principles of the proposed reduced-rank
scheme using a projection operator based on adaptive filters.
The novel scheme, depicted in Fig. 1, employs a projection ma-
trix with dimensions to process a data vector
with dimensions 1, that is responsible for the dimension-
ality reduction. The reduced-rank filter with dimensions

1 processes the reduced-rank data vector in order to
yield a scalar estimate . The projection matrix and
the reduced-rank filter are jointly optimized in the pro-
posed scheme according to the MMSE criterion.

Specifically, the projection matrix is structured as a bank of
full-rank filters

( ) with dimensions 1 as given by
. Let us now mathe-

matically express the output estimate of the reduced-rank

scheme as a function of the received data , the projection
matrix , and the reduced-rank filter

(6)

Note that for , the novel scheme becomes a conventional
full-rank filtering scheme with an addition weight parameter
that provides a gain. For , the signal processing tasks are
changed and the full-rank filters compute a subspace projection
and the reduced-rank filter estimates the desired signal.

The MMSE expressions for the filters and can be
computed through the following cost function:

(7)

By fixing the projection and minimizing (7) with respect
to , the reduced-rank filter weight vector becomes

(8)

where ,
. We proceed with

the proposed joint optimization by fixing and minimizing
(7) with respect to . We then arrive at the following
expression for the projection operator:

(9)

where , ,
and . The associated MMSE is

(10)

where . The filter expressions in (8) and (9)
are not closed-form solutions for and since (8)
is a function of and (9) depends on , and thus,
it is necessary to iterate (8) and (9) with an initial guess
to obtain a solution. The MWF [6] employs the operator

that projects the data onto the
Krylov subspace. Unlike the MWF approach, the new scheme
provides an iterative exchange of information between the
reduced-rank filter and the projection matrix and leads to a
much simpler adaptive implementation than the MWF. The
projection matrix reduces the dimension of the input data,
whereas the reduced-rank filter attempts to estimate the desired
signal. The key strategy lies in the joint optimization of the
filters. The rank must be set by the designer to ensure
appropriate performance, and the reader is referred to [12] for
rank selection methods. In the next section, we seek iterative
solutions via adaptive algorithms.

IV. ADAPTIVE ALGORITHMS

Here we describe an adaptive NLMS implementation, con-
vergence conditions, and detail the computational complexity
in arithmetic operations of the proposed reduced-rank scheme.

A. Adaptive Algorithms

Let us consider the following Lagrangian cost function:

(11)
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where , are scalar Lagrange multipliers, denotes the
Frobenius norm, and the operator retains the real part of the
argument. By computing the gradient terms of (11) with respect
to , , and , setting them to 0 and solving
the resulting equations, we obtain

(12)

(13)

(14)

(15)

By solving the above equations and introducing the convergence
factors and , the proposed jointly optimized and iterative
NLMS algorithms for parameter estimation become

(16)

(17)

where , ,
and are the time-varying
step sizes. The algorithms described in (16)-(17) have a com-
plexity . The proposed scheme trades-off a full-rank
filter against full-rank adaptive filters as the projection ma-
trix and one reduced-rank adaptive filter operating
simultaneously and exchanging information. The iteration and
convergence occurs over several observations, and here we con-
sider only one iteration per symbol .

B. Convergence Conditions

Define the error matrices at time index as
and , where and

are the optimal parameter estimators. Because of the joint op-
timization procedure, both filters have to be considered jointly.
By substituting the expressions of and in (16) and
(17), taking expectations and simplifying the terms, we obtain

(18)

where

and . The above equation implies that the
stability of the algorithms depends on the spectral radius of .
For convergence, the step sizes should be chosen such that the
eigenvalues of are less than one.

C. Computational Complexity

Here we detail the computational complexity in terms of addi-
tions and multiplications of the proposed schemes with NLMS
and other existing algorithms, namely, the Full-rank with NLMS
and RLS, the MWF [7] with NLMS and RLS, and the AVF [8],
as shown in Table I. The MWF [7] has a complexity ,
where the variable dimension of the vectors varies
according to the rank . The proposed scheme is
much simpler than the Full-rank with RLS, the MWF, and the
AVF and slightly more complex than the Full-rank with NLMS
(for , as will be explained later).

TABLE I
COMPUTATIONAL COMPLEXITY OF ALGORITHMS

V. SIMULATIONS

In this section, we assess the proposed reduced-rank scheme
and algorithms in a CDMA interference suppression applica-
tion. We consider the uplink of a symbol synchronous BPSK
DS-CDMA system with users, chips per symbol, and
propagation paths. Assuming that the channel is constant during
each symbol interval and the randomly generated spreading
codes are repeated from symbol to symbol, the received signal
after filtering by a chip-pulse matched filter and sampled at
chip rate yields the -dimensional received vector

(19)

where , is the
complex Gaussian noise vector with , the
symbol vector is

, the amplitude of user is , is the inter-
symbol interference span, the
block diagonal matrix is formed with -chips shifted
versions of the signature of user ,
and the convolution matrix is
constructed with shifted versions of the 1 channel vector

on each column and
zeros elsewhere. For all simulations, we use ,

, assume as an upper bound,
use 3-path channels with relative powers given by 0, ,
and dB, where in each run, the spacing between paths is
obtained from a discrete uniform random variable between 1
and 2 chips and average the experiments over 200 runs. The
system has a power distribution amongst the users for each run
that follows a log-normal distribution with associated standard
deviation equal to 1.5 dB.

We compare the proposed scheme with the Full-rank [1], the
MWF [7], and the AVF [8] techniques for the design of linear re-
ceivers, where the reduced-rank filter with coefficients
provides an estimate of the desired symbol for the desired user
(user 1 in all experiments) using the signal-to-interference-plus-
noise ratio (SINR) [7].Weconsider theSINRperformanceversus
the rank with optimized parameters ( , , and forgetting fac-
tors ) for all schemes. The results in Fig. 2 indicate that the best
rank for the proposed scheme is (which will be used in
the remaining experiments), and it is very close to the optimal
full-rank MMSE. Studies with systems with different processing
gains show that is invariant to the system size, which brings
considerable computational savings. In practice, the rank can
be adapted in order to obtain fast convergence and ensure good
steady-state performance and tracking after convergence.
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Fig. 2. SINR performance versus rank (D).

Fig. 3. SINR performance versus number of received symbols.

Fig. 4. BER performance versus number of received symbols.

We show an experiment in Fig. 3 where the adaptive filters are
set toconverge to thesame SINR.TheNLMSversionof theMWF
is known to have problems in these situations since it does not
tridiagonalize its covariance matrix [7] and thus is unable to ap-
proach the MMSE. The curves show an excellent performance
for the proposed scheme and algorithms, which converge much
faster than the full-rank filter, are comparable to the more com-
plex MWF-RLS and AVF schemes, at much lower complexity.

The BER convergence performance in a mobile communica-
tions situation is shown in Fig. 4. The channel coefficients are

obtained with Clarke’s model [13], and the adaptive filters of all
methods are trained with 250 symbols and then switch to deci-
sion-directed mode. The results show that the proposed scheme
has a much better performance than the existing approaches and
is able to adequately track the desired signal.

VI. CONCLUSIONS

We proposed a novel reduced-rank scheme based on joint iter-
ative optimization of adaptive filters with a low-complexity im-
plementation using NLMS algorithms. In the proposed scheme,
the full-rank adaptive filters are responsible for estimating the
subspace projection rather than the desired signal, which is esti-
mated by a small reduced-rank filter. The results for CDMA in-
terference suppression show a performance significantly better
than existing schemes and close to the optimal full-rank MMSE.

APPENDIX

Given a projection matrix , where , the
MMSE is achieved if and only if which minimizes (1) belongs
to the , i.e., lies in the subspace generated by

. In this case, we have
. For a general , we have
. From the above analysis, we can conclude that there

exists multiple solutions to the proposed optimization problem.
However, our studies indicate that there are no local minima
and the performance is insensitive to initialization, provided we
select the initial values and which do not instabilize
the algorithm and annihilate the signal, respectively.
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