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Abstract

Multiple input multiple output (MIMO) techniques have been widely employed by dif-

ferent wireless systems with many advantages. By using multiple antennas, the system

is able to transmit multiple data streams simultaneously and within the same frequency

band. The methods known as spatial multiplexing (SM) and spatial diversity (SD) im-

proves the high spectral efficiency and link reliability of wireless communication systems

without requiring additional transmitting power. By introducing channel coding in the

transmission procedure, the information redundancy is introduced to further improve the

reliability of SM links and the quality of service for the next generation communication

systems.

However, the throughput performance of these systems is limited by interference. A

number of different interference suppression techniques have been reported in the litera-

ture. Theses techniques can be generally categorised into two aspects: the preprocessing

techniques at the transmitter side and the decoding techniques at the receiver side.

Generally speaking, in the ideal case, the preprocessing techniques orthogonalize the

interfering channels, and therefore, the receiver experiences interference free transmis-

sion. However, a feedback channel is required to provide the channel information. On

the other hand, in this thesis we are interested in the decoding part which uses various

techniques to improve the signal-to-interference-and-noise ratio (SINR) of the desired

symbols. To achieve this goal, a number of low-complexity iterative detection algorithms

have been investigated. In the context of the thesis, the mainly focus is on the interference

cancellation techniques.

Firstly, we investigate the traditional successive interference cancellation (SIC) algo-



rithm. SIC has the ability to separate the spatially multiplexed signals on a MIMO chan-

nel. However, the low detection diversity order as well as the error propagation effect

restrict the bit error performance of such detectors. We propose a multiple feedback SIC

(MF-SIC) method to enhance the performance of conventional SIC detection by introduc-

ing feedback candidates and reliability checking. This algorithm is able to provide sig-

nificant performance gains with little additional complexity without the protection from

channel codes. The MF-SIC algorithm is then incorporated into an iterative detection and

decoding (IDD) scheme to process soft information.

Secondly, in the case that the MIMO channel is time-varying, the conventional de-

tection algorithms generally bring about expensive complexity in the time domain. In

order to address this problem, a decision feedback algorithm is introduced and adaptive

algorithms are derived to update the forward and backward filters to perform the detec-

tion in each time instant. A constellation based estimation refinement scheme is also

introduced in the system and the performance is significantly improved. The proposed

decision feedback algorithm is incorporated into an IDD scheme that performs iterative

(turbo) interference cancellation.

At last, the inter-cell interference is considered in a multi-cell, high frequency reuse

scenario. The distributed iterative detection (DID) algorithms are investigated. A large

amount of information need to be transmitted via a wired backhaul network where optimal

distributed detection exchange all the soft estimates among adjacent base stations (BSs).

To address this problem we consider a reduced message passing (RMP) technique in

which each BS generates a detection list with the probabilities for the desired symbol that

are sorted according to the calculated probability density. RMP introduces low backhaul

overhead compared with the hard bit exchange and outperforms the previously reported

hard/soft information exchange algorithms.
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Chapter 1

Introduction

Contents
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Problems in MIMO Systems . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 Publication List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1 Overview

After Marconi pioneered radio transmission 110 years ago, wireless communications has

become present in every aspect of modern life. Apart from the traditional text and voice

services, the applications also include video streaming, web browsing and on-line gaming.

It seems difficult to imagine our lives without wireless communications. From analogue to

digital communications, from point-to-point transmission to cellular networks, more and

more information can be transferred with the evolution of communications engineering.

Nowadays, with the gradually increasing use of 3rd and 4th generation cellular systems

P. Li, Ph.D. Thesis, Department of Electronics, University of York
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CHAPTER 1. INTRODUCTION 2

[1] and wireless LANs [2], the demands of high data rate transmission in wireless devices

with high quality of service (QoS) have never been greater.

The need for high data rates motivated researchers to develop new technologies and

standards. The demands on the bandwidth and spectral efficiency are endless. Many

powerful and efficient transmitter and receiver schemes are under development while the

network-wide design is also taken into account. For instance, cellular systems with coop-

erative capability have drawn great attention with the realization of base station coopera-

tion or signal relaying strategies. In the near future, these new designs may be investigated

with the launch of the new generations high-speed cellular network standards such as 4th

Generation, WiMAX [3] and Long Term Evolution Advanced [4]. The growing demand

for data throughput and the shortage of available bandwidth require sophisticated theo-

retic analysis, advanced signal processing algorithms and smart cellular deploying plans.

1.2 Motivation

The increase of system throughput often comes with the price of consumption of re-

sources, such as energy, bandwidth or equipments. It is believed that the increase of

data throughput can be realized without sacrificing the bandwidth and spectral efficiency

by deploying multiple antennas. A fundamental work in obtaining the multiple-input

multiple-output (MIMO) capacity in fading channels has been described by Telatar [5].

He concluded that the use of multiple antennas can greatly increase the achievable rates

in fading channels. One year later, his colleague in Bell Labs, Foschini proposed a so-

called diagonal-Bell Lab space time (D-BLAST) [6] processing algorithm. This high

computational complexity algorithm was simplified two yeas later as vertical-BLAST [7]

processing. The field demonstration of the V-BLAST algorithm showed a very promising

result that a multiple antennas system has the ability to achieve more than 20 bit/s/Hz

spectral efficiency, which is very hard to achieve for a traditional single antenna system.

In the same year, space-time trellis code (STTC) [8] and their simplified version namely

space-time block codes (STBC) [9] were introduced by Tarokh and Alamouti, respec-

tively. These algorithms sacrifice the transmit rate to obtain a diversity gain. Therefore, a

tradeoff between space diversity and multiplexing has been established and a fundamen-
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tal work with analysis has been done by Zheng and Tse [10]. The diversity gains can be

achieved by passing the signals through multiple propagation paths, each of which fades

independently. In this case, reliable communications is possible. If we separate multiple

transmit or receive antenna by a sufficient space, the diversity can be obtained [11]. In

highly dynamic wireless and mobile environments, the diversity techniques provide the

possibility of reliable communications among the highly mobilized users.

The array gain, diversity, and spatial multiplexing provided by point-to-point MIMO

system [7, 9] naturally leads to the research on MIMO applications to multiuser systems.

By using multiple antennas and appropriate signal processing tools, the point-to-point

MIMO systems can be easily extended to multiuser MIMO systems. For example, the

concept of multiuser detection which was first introduced in the context of code division

multiple access (CDMA) systems [12], can then be widely used in the detection of mul-

tiuser MIMO systems. Significant efforts have been made to improve the performance of

multiuser MIMO detection algorithms in an isolated cell [19]. On the other hand, in cel-

lular systems, by placing antennas in space, forming a virtual MIMO system, significant

gains can be attained and the antenna cooperation is very desirable. The future multicell

networks require aggressive frequency reuse in order to obtain substantial gains in spec-

trum usage and facilitate the planning of cells [13]. The full frequency reuse also makes it

possible to have seamless communications, implying switching or roaming between cells

without notice by the mobile users located on the cell edges [14].

In 1993, the invention of turbo codes [17] triggered intensive research on near-capacity

transmission. The pioneering near-capacity MIMO iterative detection and decoding

(IDD) structure with affordable computational complexity has been reported in 2003 [18].

The multiple user IDD schemes were introduced to approach interference free perfor-

mance [19]. In 2006, the application of IDD in the multiple cell environment was intro-

duced by Mayer et al. [22], and a number of base station cooperation (BSC) schemes were

developed for the sake of average cell throughput and backhaul traffic [23]- [25]. All the

previously mentioned contributions motivated the development of next generation’s wire-

less engineering, as well as this work.
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1.3 Problems in MIMO Systems

The research on MIMO communication systems has flourished after the discoveries men-

tioned in the previous section. However, a number of problems remain and challenge

researchers and designers in the following aspects:

• In highly dynamic wireless and mobile environments involving a varying number

of users and time-varying transmission conditions, the characteristics of channels

for each user change all the time. Parameter estimation techniques and applications

such as MIMO channel estimation under these conditions require highly sophisti-

cated signal processing techniques.

• The use of multiple antennas at both the transmitter and receiver enables significant

improvement in terms of link performance. In order to exploit the space diver-

sity, more and more transmit and receive antennas are used. However, in general,

exploiting these diversity gains comes at the price of significantly increased com-

plexity, especially at the receiver side [27]. As the research of large systems such

as multiuser MIMO and cellular MIMO systems grows, it is of great interest to de-

velop algorithms that have the ability to process a high number of data streams with

good performance and affordable computational complexity.

• The performance of MIMO systems is generally limited by different types of inter-

ference, namely, inter-symbol interference (ISI), inter-antenna interference, (IAI),

multiuser interference (MUI) and inter-cell interference (ICI). ISI is usually caused

by multi-path effects. IAI and MUI are major interference sources arising due to

the fact that the users’ antennas communicate through the same channel with non-

orthogonal signals [28]. ICI leads to significant losses in cell throughput mainly

due to the aggressive frequency reuse, which severely limits the data throughput of

users located on the cell edge. In order to address these problems, many methods

have been published such as precoding [31], power control [29] and antenna beam-

forming [30] as well as receiver-based multi-user detection and distributed antennas

systems (DAS) [32].

• Error control coding is used in wireless communications to provide protection for

the transmitted bits. Linear block codes and convolutional codes [34] have low com-
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plexity and decoding delay, however, there are performance losses compared with

concatenated codes such as turbo codes [35] and low-density-parity-check (LDPC)

codes [36]. Concatenated codes with an iterative decoder generally provide good

bit-error- rate (BER) performance, however, the encoding/decoding complexity and

decoding delay are increased. In terms of combination with MIMO systems, soft

information is required by the channel decoder. Soft-input soft-output (SISO) de-

tectors generally outperform hard-output detectors. In order to generate the soft-

output, the maximum a posterior (MAP) detector is used which has an exponential

growth of complexity with the increase of the number of data streams and symbol

modulation level [18]. In recent years, a number of suboptimal detectors have been

reported by using either a subset of possible vector space [18] or MMSE based soft

interference cancellation [19], however, the performance loss is inevitable.

• Synchronization is required for real-world MIMO systems. The precision of syn-

chronization algorithms has a major impact on the overall system performance [33],

which degrades seriously when the estimates of the frequency offset or the symbol

timing are not sufficiently accurate. Additionally, the synchronization of MIMO

systems requires a much higher complexity compared with the traditional single-

antenna systems.

In this thesis, the focus is on the signal processing techniques used in detecting MIMO

signals and interference suppression strategies. In order to achieve the interference mit-

igation without consuming extra bandwidth, two aspects are considered in this context,

(i) the advanced receiver processing such as multi-user detection and iterative process-

ing with the aid of channel codes. (ii) Base station cooperation strategies in a multi-user

multi-cell scenario.

1.4 Summary of Contributions

The contributions of this thesis are summarized as follows:

• The conventional V-BLAST has a performance loss compared with optimal de-

P. Li, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 1. INTRODUCTION 6

tectors. In order to address this problem, a novel low-complexity multi-feedback

successive interference cancellation (MF-SIC) detection is developed for the uplink

of MIMO systems. By introducing a shadow-area decision device, the unreliable

estimates are replaced by the symbols which are selected from a set of candidate

lists while reliable ones are quantized directly for interference cancellation. The

proposed detection algorithm provides significant improvement and approaches the

optimal performance at the price of little extra complexity requirements.

• The signal detection in time-varying channels requires excessive computational

load in the time domain. The previously reported adaptive decision feedback detec-

tion algorithms have performances far from optimal. In this thesis, a scheme called

constellation constraints (CC) is proposed and combined with the recursive least

squares (RLS) based adaptive algorithm for detecting the signal transmitted in the

time-varying MIMO channel. In this algorithm, an enhanced symbol estimation is

achieved and the error propagation is effectively mitigated. The performance of the

maximum likelihood detection is approached in various channel fading conditions.

A complexity reduction strategy is also considered to avoid processing with reliable

decisions to save computational resources.

• The implementation of the above described algorithms are both compared with a

number of existing detection strategies for a different number of users or antenna

elements. In order to achieve a higher detection diversity order, a multiple branch

(MB) structure is also incorporated in the proposed schemes to achieve a near-

optimal performance.

• In order to combine the detection schemes with error control codes, soft-output is

required to facilitate the iterative signal processing and iterative detection and de-

coding (IDD) schemes. The soft-output detectors are developed based on both the

proposed MF-SIC and CC aided detection algorithms. For MF-SIC, followed by

multi-feedback processing, the soft interference cancellation is performed to com-

pute the bit probability. This so-called soft cancellation aided MF-SIC (MF-SIC-

SC) reduces the decoding delay and allows a near interference free performance.

Similarly to list sphere decoders (LSD) [18], the proposed CC aided decision feed-

back detector uses the tentative decisions to form a “list” to calculate the likelihood

of each transmitted bit. By concatenating the soft-output detector with the channel

decoder, the probability of decision errors is significantly reduced.
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• In terms of multi-cell cooperative processing, a distributed iterative detection struc-

ture with reduced message passing is proposed. By sorting the probability of trans-

mit symbol with a decreased order, a list is generated at each cooperating base

station. A selection unit (SU) is proposed to collect the index information and se-

lect the best from each list. The transmission of quantized soft information can be

avoided which significantly reduces the backhaul traffic.

1.5 Thesis Outline

The rest of the thesis is organized as follows:

• In Chapter 2, a literature review is presented. The capacities of traditional and

cellular MIMO systems are analysed and followed by the description of a number

of existing optimal and sub-optimal MIMO detection techniques. The interference

suppression, detection diversity, multi-user detection algorithms and adaptive signal

processing techniques are also considered in the context.

• In Chapter 3, a novel low-complexity MF-SIC detection is introduced, the perfor-

mance and complexity analysis are given. The simulations illustrate that the per-

formance of the proposed algorithm significantly outperforms the traditional SIC

scheme with negligible additional complexity.

• In Chapter 4, by using the RLS algorithm, a decision feedback detector is intro-

duced for detecting signals transmitted in time-varying MIMO channels. A deci-

sion refinement scheme is introduced and the proposed detector can also approach

the optimal performance at the price of a low additional cost.

• In Chapter 5, we propose a parallel multi-feedback scheme which is used in a multi-

cell system with base station cooperation (BSC), the simulation results indicate that

the backhaul traffic is significantly reduced and the isolated cell performance is

obtained with low complexity distributed detection.

• In Chapter 6, conclusions are made and a discussion on the possibility of future

work is presented.
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1.6 Notation

In this thesis, we use capital and small bold fonts to denote matrices and vectors, i.e., A

and a, respectively. Elements of the matrix and vector are denoted as Am,n = [A]m,n and

am = [a]m. The symbol j is an imaginary unit j =
√
−1. We denote ℜ{·} and ℑ{·}

as the real and imaginary components of a complex number, respectively; (·)∗ denotes

complex conjugate; IQ denotes an Q × Q identity matrix; (·)T and (·)H denote matrix

transpose and Hermitian transpose, respectively. E{·} denotes the statistical expectation

operator and tr{·} denotes the trace operator.
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Fundamental Techniques
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2.1 Overview

In this chapter, fundamental techniques used throughout this thesis are introduced. These

include capacity of MIMO channels, channel parameter estimation, MIMO detection al-

gorithms and error control coding, amongst the important techniques used in the design

of MIMO communication systems.
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2.2 Channel Capacity and Parameter Estimation

In this section, we review the capacity of deterministic and random MIMO channels as

well as channel parameter estimation techniques.

2.2.1 MIMO Channel Capacity

Compared with the conventional single-antenna systems, MIMO systems have the ability

to increase the channel capacity by the factor of min(NT , NR) where NT is the num-

ber of transmit antennas and NR is the number of receive antennas. Instead of time and

frequency, the other dimension - space, is used to separate the co-channel data streams

and provide the multiplexing gains. By deploying multiple antennas, the increase of data

throughput can be realized without sacrificing the power, bandwidth and spectral effi-

ciency. Because of these advantages, MIMO systems have been actively investigated [3]

and deployed in broadband wireless access networks such as Mobile WiMAX and LTE-

Advanced [4].

It has been proven that the MIMO wireless channel has the ability to obtain high chan-

nel capacity [5], which has stimulated research on the techniques to achieve high speed

data transmission or high link reliability. Therefore, the studies on MIMO systems gen-

erally fall into different categories: spatial-multiplexing [6] and diversity techniques [9],

and their relation is studied in [10] and [11]. On the one hand, the spatial-multiplexing

configuration is used in the systems with the aim of achieving the maximum data transmis-

sion rate supported by the MIMO channel. On the other hand, when diversity techniques

are used, the aim of the system is to increase the reliability and to obtain lower bit error

rate [37] [39].

In order to obtain the maximum achievable transmission rate provided by the spa-

tial multiplexing MIMO systems, in this section, we discuss the capacity provided by

the wireless MIMO channel. In the following, the capacity of deterministic and random

channels are derived.
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Figure 2.1: NR ×NT MIMO system.

MIMO system model

In this thesis, we will focus on narrowband MIMO communication systems with fre-

quency flat fading channels, the problems presented here can be generalized to the multi-

path fading channel by introducing orthogonal frequency-division multiplexing (OFDM)

or equalization techniques.

Fig. 2.1 shows a narrowband wireless MIMO channel presented by a NR ×NT deter-

ministic matrix H ∈ CNR×NT . Let the symbol vector s ∈ CNT×1 denote the transmitted

symbols and s = [s1, s2, . . . , sNT
]T and E{sHs} = σ2

sINT
, where σ2

s represents the

variance of the transmit symbol. Each independent transmitted signal sk radiated from

the transmit antenna is received by NR receive antennas to form a received signal vector

r ∈ CNR×1, given by

r = Hs+ v, (2.1)

where the noise vector v = [n1, n2, . . . , nNR
] ∈ CNR×1 is assumed as zero-mean circular

symmetric complex Gaussian. By zero-mean circular symmetric complex Gaussian, it

means that v affects equally the in-phase and quadrature components from a statistical

point of view. The autocorrelation of the noise vector and the transmit symbol vector are

given by
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Znn = E{vvH},

= σ2
vINR

,
(2.2)

Rss = E{ssH}.

= σ2
sINT

.
(2.3)

where σ2
v denotes the noise variance. The autocorrelation of the received vector r is

obtained by

Rrr = E{rrH}

= E
{
(Hs+ v)(Hs+ v)H

}
= E

{
(Hs+ v)(sHHH + vH)

}
= E

{
HssHHH + vvH

}
= HRssH

H +Znn.

(2.4)

The capacity of a deterministic channel is defined as the maximum mutual information,

that can be achieved by varying the probability density function (PDF) of the transmit

signal vector f(s), which is given by [5]

C = max
f(s)

I(s; r), (2.5)

where f(s) is the PDF of the transmit vector s. The mutual information between the

random vectors s and r is calculated as I(s; r) = H(r) − H(r|s) where H(r) is the

differential entropy of r. Since v is independent from s, the equation can be rewritten as

I(s; r) = H(r)−H(v). (2.6)

The mutual information of r and v are

H(r) = log2

{
det(πeRrr)

}
, (2.7)

H(v) = log2

{
det(πeZnn)

}
, (2.8)

By using the above equations, the mutual information is obtained as

I(s; r) = log2 det
(
INR

+
1

σ2
v

HRssH
H
)
. (2.9)
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Therefore, the deterministic MIMO channel has a capacity given by

C = max
tr(Rss)=NT

log2 det
(
INR

+
1

σ2
v

HRssH
H
)
. (2.10)

MIMO Capacity when Channel is Known to the Transmitter

By setting up feedback links in the communication system, the channel state informa-

tion (CSI) is available at the transmitter side, the transmitted signal is precoded before

transmitted through the channels.

In this scenario, the transmitted signal s is pre-processed by the precoder U at the

transmitter side and the received signal is then post-processed with V H at the receiver

side. By using singular value decomposition (SVD), the NR×NT MIMO channel can be

separated into NT parallel independent virtual single-input single-output (SISO) channels

[11], and the channel capacity can be obtained by summing up the capacities across all

the virtual SISO channels.

This capacity analysis is only related to the systems with feedback channels, and pre-

coding is used at the transmitter side. A detailed discussion of the capacity when the

channel is known to the transmitter can be found in references such as [11] and [38].

MIMO Capacity when Channel is Unknown to the Transmitter

Since the CSI is not known at the transmitter, the transmitted signals have an equal power

across NT transmit antennas. Then, the autocorrelation function of s can be rewritten as

Rss = σ2
sINT

, and the channel capacity can be re-calculated as

C = log2 det
(
INR

+
σ2
s

σ2
v

HHH
)

= log2 det
(
INR

+
σ2
s

σ2
v

QΛQH
)

= log2 det
(
INR

+
σ2
s

σ2
v

Λ
)

=

min(NR,NT )∑
k=1

log2

(
1 +

σ2
s

σ2
v

λk

)
,

(2.11)
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where the eigen-decomposition HHH = QΛQH is applied and Q is the square matrix

whose column is the eigenvector of H , the value Λ is the diagonal matrix whose diagonal

elements are the corresponding eigenvalues. We can see from the results that the MIMO

channel is converted into min(NR, NT ) SISO channels with the same transmit power for

each transmitted signal.

Capacity of Random MIMO Channels

In reality, the channels are not deterministic, and the channels change randomly due to

the mobility. The channel capacity also changes according to the random fading of the

channel coefficients. Therefore, the random MIMO channel capacity can be obtained by

taking the average capacity across time.

Assuming the randomness of the channel is an ergodic process, the ergodic capacity

can be obtained by the following function

Cergodic = E
{

max
tr(Rss)=NT

log2 det
(
INR

+
1

σ2
v

HRssH
H
)}

. (2.12)

The ergodic MIMO channel capacity is shown in Fig. 2.2. CSI is not available to the

transmitter, we can see from the figure that the ergodic capacity grows linearly as more

antenna pairs are included.

2.2.2 MIMO Channel Estimation

In wireless transmission, the transmitted signal is usually distorted by the channel char-

acteristics. To recover the transmitted bits, the channel characteristics must be measured

and compensated at the receiver side [40] [41]. For instance, the CSI is not only required

to perform channel equalization, but it is also required for detecting MIMO signals. By

using pilot symbols or preamble which are known to both the transmitter and receiver, the

channel estimation can be performed.
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Figure 2.2: Ergodic channel capacity with various antenna configurations. CSI is not

known by the transmitter.

Data-aided Channel Estimation

Compared with blind channel estimation techniques [42], data-aided channel estimation

algorithms generally have better performance [43] at the cost of transmission efficiency

due to the introduction of pilot symbols. One of the most widely used data-aided methods

is the least-squares (LS) algorithm.

Least-squares Channel Estimation

Assuming multiple antennas are used, the channel H [i] has NRNT tap weights and [i]

denotes the time index, let Ĥ denotes the estimate of the channel. The transmitted pilot

symbols s[i] ∈ CNT×1 are distorted by the channel H and collected as a received signal

vector r[i] ∈ CNR×1.

The LS channel estimation algorithm computes the estimate of Ĥ by minimizing the
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following Euclidean cost function:

J (Ĥ) =
i∑

τ=1

λi−τ
∥∥r[τ ]− Ĥ [i]s[τ ]

∥∥2

=
i∑

τ=1

λi−τ (r[τ ]− Ĥ [i]s[τ ])H(r[τ ]− Ĥ [i]s[τ ])

=
i∑

τ=1

λi−τ (r[τ ]H − s[τ ]HĤ [i]H)(r[τ ]− Ĥ [i]s[τ ]).

(2.13)

where 1 < λ ≪ 0 is the forgetting factor. To minimize the cost function, the gradient of

the cost function with regard to the channel estimate Ĥ needs to be set to the zero matrix

as
∇ĤJ (Ĥ) = 0,

i∑
τ=1

λi−τ
[(
r[τ ]− Ĥ [i]s[τ ]

)
s[τ ]H

]
= 0.

(2.14)

The solution is given by

Ĥ = Y X−1. (2.15)

where Y =
∑i

τ=1 λ
i−τr[τ ]s[τ ]H and X =

∑i
τ=1 λ

i−τs[τ ]s[τ ]H .

The mean-square error (MSE) of the LS channel estimation is obtained by

MSELS = E
{
(H − Ĥ)H(H − Ĥ)

}
. (2.16)

2.3 MIMO Detection Algorithms

The application of multiple antennas may be classified into the following two categories:

• By using diversity techniques, such as STBC [45] STTC etc [44] [46]. MIMO

systems exploiting the resources such as space, time, frequency to compensate the

deep fading effect which convert an unstable wireless fading channel into a stable

AWGN-like channel.

• Without sacrificing the bandwidth, spatially multiplexed MIMO systems provide

higher transmission rates as compared with the MIMO systems using the diversity
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techniques mentioned above. The spatial multiplexing is generally realized by us-

ing signal detection algorithms at the receiver side to separate the co-channel data

streams.

In this Chapter, we focus on the development of the detection techniques for spatially

multiplexed MIMO systems.

Detecting Spatially Multiplexed MIMO

We adopt the MIMO system model described in the previous section, where H ∈
CNR×NT is the complex channel matrix, each entry hnr,nt denotes the channel gain be-

tween the nt-th transmit antenna and the nr-th receive antenna. The NR × NT MIMO

system is given as
r[i] = Hs[i] + v[i]

=

NT∑
k=1

hksk[i] + v[i],
(2.17)

where s[i] ∈ CNT×1 is the transmitted data, r[i] ∈ CNR×1 is the received vector. The

quantity hk ∈ CNR×1 represents the k-th column vector of the channel matrix H and

v ∈ CNR×1 is a zero-mean circular symmetric Gaussian noise.

2.3.1 Optimal Signal Detection

Maximum A Posteriori Probability Detection

Let us define a complex-valued noise vector v with the covariance matrix E{vHv} =

σ2
vI . The joint probability density function of r, which is a multi-variate complex Gaus-

sian with i.i.d. circularly symmetric component, given s and H is

P (r|s,H) =
1

(πσ2
v)

NR
exp

(
− ∥y −Hs∥2

σ2
v

)
. (2.18)

The maximum a posteriori probability (MAP) detection determines the estimate of

the symbol vector by finding the possible transmitted signal vector with the highest a
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posteriori probability,

ŝMAP = arg max
ŝ∈ANT

P (ŝ|r,H)

= arg max
ŝ∈ANT

P (r|ŝ,H)P (ŝ),
(2.19)

where A denotes the set of complex constellations. The MAP detection achieves an op-

timal performance, however, the computational complexity of this algorithm increases

exponentially as the number of dimensions increases, such as modulation order and the

number of transmit antennas. The MAP algorithm requires the a priori information P (ŝ)

to compute the metric in (2.19). If it is the case that all the transmitted vectors are equally

likely, then the MAP detection is equivalent to maximum likelihood (ML) detection.

Maximum Likelihood Detection

The optimal ML detection algorithm tries all the possible transmitted signal vectors with

the given channel H , the detector computes the Euclidean distance by J (s)Euclidean =

∥r −Hŝ∥2, the signal vector with the minimum Euclidean distance is determined as the

estimate of the transmitted signal.

ŝML = arg max
s∈ANT

P (r|s)

= arg max
s∈ANT

1

(πσ2
v)

NT
exp(−∥r −Hs∥2

σ2
v

)

= arg min
s∈ANT

J (s)Euclidean,

(2.20)

Similarly to MAP detection, the algorithm requires an exhaustive search of |A|NT equa-

tions in (2.20) . The high complexity of the metric calculation prevents the actual applica-

tion of these detectors in the real world, except for very small systems and constellations.

2.3.2 Linear Signal Detection

Linear detection methods recover the desired data stream from the multiple-antenna data

streams by applying a linear transformation followed by a decision of the transmitted

symbol. The interference signals from the other transmit antennas are suppressed or nul-

lified before detecting the data streams from the desired transmit antenna. In the linear
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detection algorithm, each symbol is estimated by a linear combination of the received

signals and the filter matrix Ω ∈ CNR×NT .

The linear transformation is often expressed as a filter matrix and can be obtained

by solving the following optimisation problem under the minimum-mean-square-error

(MMSE) criterion,

ΩMMSE = arg min
ΩMMSE

{s−ΩH
MMSEr}, (2.21)

The solution is given by

ΩMMSE =
(
HHH +

σ2
v

σ2
s

I
)−1

HH . (2.22)

The estimate of the transmitted vector s is obtained by processing the received vector r

with the filter matrix ΩMMSE, which is given by

s̃ = ΩH
MMSEr

=
(
HHH +

σ2
v

σ2
s

I
)−1

HHr

= s+
(
HHH +

σ2
v

σ2
s

I
)−1

HHv

= s+ vMMSE.

(2.23)

where vMMSE is the MMSE effective noise. From the above equations we can conclude

that the performance of linear detection is directly related to the power of the MMSE

effective noise which is calculated as

E
{
∥vMMSE∥2

}
= E

{∥∥(HHH +
σ2
v

σ2
s

I
)−1

HHv
∥∥2}

=

NT∑
k=1

σ2
k(

σv

σs
)2

(σ2
k + (σv

σs
)2)2

,

(2.24)

where σk, k = 1, . . . ,min{NT , NR} are diagonal elements and mathematical manipula-

tions of the above equations can be found in Appendix A.

2.3.3 Successive Interference Cancellation

V-BLAST [7] is a non-linear successive interference cancellation (SIC) based detection

algorithm with sorted cancellation ordering. Primarily, these non-linear methods have
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better performance than linear algorithms at the cost of the complexity of hardware im-

plementation.

Instead of detecting the NT data streams simultaneously as the linear detectors do,

the SIC detection algorithms detect the signal components in a sequential bias. The suc-

cessively detected signal in each stream is then subtracted from the received signal, the

remaining received signal with the reduced interference is used for performing the signal

estimation for the following streams [47].

The conventional SIC algorithm computes the NR × 1 MMSE filter corresponding to

each layer’s data stream as

ωk = (H̄kH̄k
H
+

σ2
v

σ2
s

I)−1hk. (2.25)

where H̄k denotes the matrix obtained by taking the columns k, k + 1, . . . K of H . In

this algorithm, the procedure uses nulling and symbol cancellation to successively detect

the desired symbol for each data stream ŝk[i], k = 1, . . . , K.

ŝk[i] = Q(ωH
k řk[i]), (2.26)

where Q(·) denotes the quantization operation and [i] is the index of symbol period. These

detected symbols construct decision vector ŝ[i] = [ŝ1[i], ŝ2[i], ..., ŝK [i]]
T . The succes-

sively cancelled received vector in the k-th stage isřk[i] = r[i], k = 1,

řk[i] = r[i]−
∑k−1

j=1 hj ŝj[i], k ≥ 2.
(2.27)

After subtracting the detected symbols from the received signal vector, the remaining

signal vector is processed either by an MMSE or a ZF filter for the symbol estimation in

the following streams. The SIC detector uses a simple sliced symbol as the feedback and

its reliability is disregarded. In terms of the computational complexity, the SIC detector

based on the MMSE criterion hasO(NR
3). In the popular V-BLAST scheme, a signal-to-

noise-ratio (SNR) ordered SIC (O-SIC) based on MMSE or zero forcing (ZF) estimation

is employed. The detected signal is subtracted through a feedback loop that performs an

interference cancellation and improves the overall bit error rate in MIMO systems. In

the case ŝk = sk, the strong interference sk is successfully cancelled. However, if it is

the case that ŝk ̸= sk, the subtraction operation with the erroneous detected symbol may
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cause error bursts and overall performance degradation. This problem is named error

propagation [48] [49], which limits the performance of SIC based detectors. In order

to constrain the error propagation effect, it is desirable to detect reliable signals in the

early stages, therefore, the detection nulling and cancellation order (NCO) has significant

influence on the performance of SIC methods.

SINR Ordering

The post-detection signal-to-interference-plus-noise-ratio (SINR) is used to decide the

order of detection. In this algorithm, the noise characteristic and the channel gains are

used for deciding the NCO [50]. The SINR of each layer is given by

SINRk =
σ2
s |ωk,MMSEhk|2

σ2
s

∑
l ̸=k |ωk,MMSEhl|+ σ2

v∥ωk,MMSE∥
, (2.28)

where ωk,MMSE is the k-th row of the MMSE matrix (2.22) and hk is the k-th column

vector of the channel matrix H . The MMSE criteria is considered and the post-detection

SINR is maximized.

By choosing the layer with the highest SINR, the algorithm performs the nulling and

the order of cancellation is decided. The estimated symbol with this layer is then cancelled

from the receive vector and the corresponding column vector of of the channel hk is

removed from the channel matrix. The nulled channel matrix is then used to compute

ωk in (2.28) and choose the highest SINR from the remaining undetected symbols. This

process is repeated until all s1, . . . , sNT
are detected.

SNR Ordering

By ignoring the interference terms in (2.28), the SNR based equation used in deciding the

ordering is obtained, the equation is simplified as

SNRk =
σ2
s

σ2
v∥ωk∥2

. (2.29)

Similarly to SINR ordering, the procedure is required to repeat NT −1 times to obtain the

order of nulling and cancelling.

P. Li, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 2. FUNDAMENTAL TECHNIQUES 24

Channel Norm Ordering

The aforementioned ordering methods have good performance, however, they incur rather

high computational complexity. For systems with a large number of antennas, the in-

volved matrix inversion bring about very high complexity, especially when the channel

matrix is time-varying [51]. In order to reduce the ordering complexity, a scheme named

channel norm ordering is introduced by using the column vectors in the channel matrix.

Let us assume the transmitted symbols have equal power, e.g. PSK modulation is used.

We observe that the received signal strength of the transmitted sk relies on the norm of the

k-th column in the channel matrix H , the received signal strength of the k−th transmitted

signal is proportional to the norm of the k-th column in the channel matrix. Therefore,

we can detect the signal in the order of the norms of the column vectors.

The order of detecting the signal can be configured corresponding to a decreasing order

of ∥hk∥ where k = 1, . . . , NT .

∥h1∥2 ≥ ∥h2∥2 ≥ . . . ≥ ∥hNT
∥2, (2.30)

where hk is the k-th column vector of the channel matrix H . Instead of NT −1 loops, the

column norm ordering is required only once. The complexity of channel norm ordering

is significantly lower than those of the SNR and SINR based ordering methods.

In Fig. 2.3, the curves represent the bit-error-rate (BER) performance of the MMSE

based SIC detection with different NCO methods. In the simulations, 8 antenna pairs are

used and 8-PSK symbols are transmitted. The SINR ordering method outperforms other

two and the channel norm base ordering has the worst performance among the three.

2.3.4 Sphere Decoding

The tree search based sphere decoder (SD) [52] is an alternative scheme for finding the

ML solution vector among all the possible transmitted symbol vectors. Instead of search-

ing all the possible decision branches (optimal method), SD considers only a small set

of possible transmitted signal vectors within a sphere [53] [18]. The dynamic adjustment
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Figure 2.3: Performances of SIC detection with different detection ordering methods. CSI

is perfectly known by the receiver. MMSE receiver with 8-PSK modulation on a 4 × 4

MIMO channel.

of the sphere radius is also introduced in order to find the single ML solution vector.

Consider (2.1) expressed in an alternative form by the following equations:

r̄ = H̄s̄+ v̄ (2.31)

where

r̄ =

 ℜ{r}
ℑ{r}

 s̄ =

 ℜ{s}
ℑ{s}

 v̄ =

 ℜ{v}
ℑ{v}

 , (2.32)

and

H̄ =

 ℜ{H} −ℑ{H}
−ℑ{H} ℜ{H}

 ∈ R2NR×2NT . (2.33)

The SD exploits the following relations and the mathematical manipulations of the fol-

lowing equations can be found below

ˆ̄s = argmin
ˆ̄s
∥r̄ − H̄∥2

= argmin
ˆ̄s

(s̄− ˆ̄s)TH̄
T
H̄(s̄− ˆ̄s)

= argmin
ˆ̄s

(s̄− ˆ̄s)T R̄
T
Q̄

T
Q̄R̄(s̄− ˆ̄s)

= argmin
ˆ̄s
∥R̄(x̄− ˆ̄x)∥2

(2.34)
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Rsphere

Figure 2.4: Illustration of sphere radius. The center of the circus denotes the linear ZF

estimation and the red dot denotes the ML vector.

where H̄ = Q̄R̄ is the QR decomposition of the channel matrix and the metric ∥R̄(x̄−
ˆ̄x)∥2 is constrained within the sphere radius

∥R̄(x̄− ˆ̄x)∥2 ≤ R2
sphere. (2.35)

Fig.2.4 illustrates a sphere with a centre of ˆ̄s = (H̄
H
H̄)−1H̄

H ˆ̄r. The algorithm only

considers the lattice points inside the sphere, the ML solution vector is included. The

ML vector is represented as the lattice point which is closest among the candidates. For

the sake of detection simplicity, the sphere radius can be reduced such that we may have

a single vector remaining. However, if we choose the radius too small, and zero lattice

point is included in the sphere, the sphere radius R2
sphere needs to be enlarged to cover at

least one lattice point. The upper-triangle structure of R̄ provides∑
k=1,...,NT

∣∣∣ ∑
j=NT ,...,k

r̄k,j(s̄j − ˆ̄sj)
∣∣∣2 ≤ R2

sphere, (2.36)

where s̄j and ˆ̄sj is the j-th element of the vector s̄ and ˆ̄s respectively. The quantity r̄k,j is

the element in the k-th row and j-th column of R̄.

The performance of the SD is the same as the optimal ML detector provided the ra-

dius is appropriately selected, whereas the computational complexity can be significantly

reduced.
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2.4 Iterative Processing

In this chapter, a number of iterative processing methods are reviewed. First, we introduce

the encoding and decoding structure of the turbo codes. And then, as the extension of the

turbo decoding, a method named iterative detection and decoding (IDD) algorithm with

spatially multiplexed MIMO systems is described. Finally, an analytical tool namely ex-

trinsic information transfer (EXIT) chart, is given to analyse the behaviour of the iterative

processing procedure.

2.4.1 Turbo Codes

In 1993, the gap between the channel coding systems and Shannon’s theoretical limit was

closed by Berrou, Glavieux and Thitimajshima. The term “turbo codes” was then used

to describe a class of concatenation codes that employ an iterative decoding structure to

achieve a near-capacity signal transmission in wireless communications.

Parallel Concatenated Codes

The first version of the Turbo Codes is the parallel concatenation of two component codes,

as illustrated in Fig. 2.5, the constituent code is known as recursive systematic convolu-

tional (RSC) code. Two identical RSC encode two bit sequences in a parallel manner. One

stream of bit sequence is the message bits, the other stream is the interleaved message bit

sequence. The encoded message (parity bits) and the original message (systematic bits)

are then distorted by noise and used for decoding. The decoding scheme for the paral-

lel concatenated codes is described as follows. By using the soft-input soft-output (SISO)

based MAP decoding algorithm, two codes are decoded separately. Each decoder uses the

extrinsic information on the systematic bits of the other decoder as a priori knowledge.

After a number of iterations, the decoder converges and the estimates of the a posteriori

probability of the transmitted bits are obtained at the output of the decoder.
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L(û)

Figure 2.5: Parallel concatenated encoding and decoding structure. L(û), Lc(u), La(u)

and Le(u) denote the a posteriori, channel, a priori and extrinsic information, respec-

tively. The upper scripts 1 and 2 denote the values are used or produced by the decoder 1

and decoder 2, respectively.

Serial Concatenated Codes

The encoding and decoding of a serially concatenated code is depicted in Fig.2.6. The

coded bits of the outer encoder are interleaved before being fed to the inner encoder. The

constituent outer code is non-systematic convolutional codes (NSC). In order to achieve

the interleaver gain, RSC is required by the outer code. The outer code should have a

large free distance and a good distance spectrum [54]. Similarly to decoding parallel

concatenated codes, the two decoders in serial exchange the extrinsic information as the

the decoding iterations are performed. The difference with the parallel concatenated code

is that the outer decoder only receives the channel information through the inner decoder.

Since no extra input is required for the outer decoder, the serial concatenation is naturally

easily generalized for application in many communications scenarios.
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Figure 2.6: Serial concatenated encoding and decoding structure. L(û), Lc(c), La(u) and

Le(u) denote the a posteriori, channel, a priori and extrinsic information, respectively.

The upper scripts 1 and 2 denote the values are used or produced by the decoder 1 and

decoder 2, respectively.

2.4.2 Iterative Detection and Decoding

Shortly after the introduction of turbo codes, the concept of iterative decoding has been

recognized as central for solving a large number of decoding and detection problems in

wireless communication systems [55]. The so-called “turbo concept” has been incorpo-

rated as a general methodology for advanced system design in the following applications,

• iterative equalization [57] [19]

• iterative BICM [58] [59]

• iterative MIMO detection and decoding [18] [19]

• iterative multiuser detection [56] [19]

• iterative channel estimation [63]

• iterative detection with base station cooperation [22] [60]

• iterative interleave division multiple access [64]

In this thesis, the author is generally interested in developing iterative detection and de-

coding (IDD) algorithms for spatially multiplexed MIMO data streams. Fig. 2.7 illustrate
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Figure 2.7: Block diagram of a iterative MIMO detection and decoding transmission

system.

the structure of a MIMO IDD transmission system. The message is first encoded by a

NSC, the coded bits are then interleaved and fed to the device which performs spatial

multiplexing, the multiplexed bits are modulated to symbols before radiating from NT

transmitting antennas. At the receiver side, the SISO MIMO detector is applied to de-

tect the transmitted symbols and convert the symbol probability to bit probability in the

form of log-likelihood ratios (LLRs). The extrinsic information Le(·) is then exchanged

between the detector and the decoder with several iterations. The a posteriori probability

of the transmitted bits are then finally obtained at the output of the decoder.

On one hand, the NSC and decoder blocks are considered as the outer code of the

serially concatenated structure, when NSC is applied, BCJR [65] based MAP or log-MAP

decoding algorithm can be applied as well as the lower complexity alternative named soft-

output Viterbi algorithms (SOVA) [66]. Instead of using NSC as the channel code, turbo

codes and LDPC codes have also been used in this structure to obtain a near-capacity

performance [18] [67]. On the other hand, the S/P modulation and MIMO detection

blocks are considered as the inner component of the serially concatenated structure. In

general, MAP is the optimal algorithm used as the SISO detection component in the IDD

receiver. The MAP detection and its simplified version such as log-MAP, max-log-MAP

provide the optimal BER performance, however, the complexity is extreme even with

a moderate number of antennas and modulation level. In order to solve this problem,

a “list” version of SD was developed by Hochwald and Ten Brink without significant

loss of performance [18]. The complexity of the MIMO detection is further brought
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down by introducing soft parallel interference cancellation (SPIC) in [19], [91] at the

cost of performance loss. Recently, the SPIC was successfully applied to the hardware

implementation by Studer in his thesis [27].

2.4.3 EXIT Chart Analysis

The iterative processing principle provides substantial gains in each “turbo” iteration. It

is difficult to analyse the behavior and the performances of its two constituent compo-

nents. Many efforts have been made to investigate the convergence behavior of iterative

decoding, such as the methods mentioned in [69] and [70]. Among them, the extrinsic

information transfer (EXIT) chart reported in 2001 by Ten Brink is the one widely used

by researchers and designers. By using this tool, mutual information is measured and

used to describe the flow of extrinsic information through the SISO components.

With the restriction of binary inputs x ∈ {+1,−1}, the mutual information between

the transmitted data X and the respective information L is obtained as [70]

I(L;X) = 1−
∫ +∞

−∞
p(L|x = +1) log2(1 + e−L)dL,

= 1− E{log2(1 + e−L)},

≈ 1− 1

N

N∑
j=1

log2(1 + e−xnLn),

(2.37)

where L is in the form of log-likelihood-ratio (LLR). The expectation operation is ap-

proximated by time averages, a large number of samples xn is required for an accurate

estimation.

Fig. 2.8 illustrates the EXIT chart for outer convolutional codes with memories 2, 3,

4, 5 and rates 1/2, 1/4, respectively. All curves start at (0,0) and finish at (1,1) point, the

mutual information at the output of the log-MAP decoder IE is plotted in the horizontal

axis, and at the input of the decoder, mutual information IA is given in the vertical axis.

Let us assume a serial concatenation given by Fig. 2.7, where the modulator and the

detector are considered as the inner component for the IDD receiver structure. In this con-

figuration, we also assume a single antenna is used for both transmitter and receiver. The
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Figure 2.8: EXIT charts of a coded system with different convolutional codes as outer

codes.

EXIT charts for the outer component (detector) are given in Fig. 2.9 by using different

bit mappings. We can see that Gray labelling does not benefit from the a priori mutual

information which means there is no iteration gain with the application of IDD. Other

labelling methods such as anti-Gray, maximum euclidean weight (MSEW) and set parti-

tioning (SP) [71], all benefit from the a priori knowledge. With the help of EXIT charts,

the behaviour of the IDD structure can be analysed and the design of the concatenation

components are also easier.

Fig. 2.10 illustrates a spatially multiplexed 4 × 4 MIMO system with IDD receiver.

The exchange of extrinsic information is shown in terms of the trajectory. In this figure,

the solid lines denotes the EXIT curves which are obtained by Eb/N0 = 7 dB, and the

dashed lines show the curves plotted with Eb/N0 = 5 dB. Due to noise, the detection

and decoding tunnel is closed and the trajectory is terminated at the early stage. In this

situation, the a priori information provided by the decoder is not helping the detection and

a higher SNR is needed to raise the detector curve and to create an open tunnel. There

are also a number of ways to create a tunnel without increasing the SNR, such as using

different mapping scheme or precoding techniques [113].
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Figure 2.9: EXIT charts for 8-PSK modulation , 1× 1 antenna system. The detector uses

log-MAP algorithm and Eb/N0 = 7dB.
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2.5 Summary

In this chapter, we introduced background knowledge of MIMO systems and the corre-

sponding receiver techniques which are used in the later chapters of this thesis. In the

first part of this chapter, we described the transmission model of multiple antenna sys-

tems and the analysis of the capacity of MIMO systems was given in detail. It is evident

that the multiple antenna systems have an attractive ability to increase the bandwidth

efficiency with the spatial multiplexing configuration. Then, the parameter estimation

methods used for channel estimation have been also included in order to facilitate the

use of channel state information (CSI) in the detection and decoding operations. In the

second part of the chapter, we started from reviewing the optimal MAP and ML detec-

tors and then, a series of sub-optimal detectors have also been described in detail, namely

the MMSE based linear detection, MMSE based SIC detection as well as sphere decod-

ing algorithm. These sub-optimal detection algorithms have computational complexities

significantly lower than the optimal ones. Meanwhile, the channel control coding such

as convolutional codes and turbo codes are described as the components of the iterative

processing structure. The SISO iterative detection and decoding algorithm was also illus-

trated and the EXIT chart analysis was introduced.
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3.1 Overview

In this chapter, a low-complexity multiple feedback successive interference cancellation

(MF-SIC) strategy is proposed for point-to-point and multiuser MIMO systems. This is

motivated by the fact that, for detection algorithms, optimal maximum likelihood detec-

tion (MLD) and sphere decoder (SD) require an exponential complexity as the number of
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data streams and the modulation level increases. In the proposed MF-SIC algorithm with

shadow area constraints (SAC) strategy, enhanced interference cancellation is achieved by

introducing constellation points as the candidates to combat the error propagation in deci-

sion feedback loops. We also combine the MF-SIC with multi-branch (MB) processing,

which achieves a higher detection diversity order.

For coded systems, a low-complexity soft-input soft-output (SISO) iterative (turbo)

detector is proposed based on the MF and the MB-MF interference suppression techniques

for detecting MIMO signals.

The computational complexity of the MF-SIC algorithm is comparable to the conven-

tional SIC algorithm since very little additional complexity is required. Simulation results

show that the proposed algorithms significantly outperform the conventional SIC scheme

and approach the optimal ML detector.

3.2 Introduction

It has been recognized that deploying multiple transmit and receive antennas can signifi-

cantly improve the performance of wireless links in communication systems [8]. Multiple

co-located antennas provide dramatic spatial multiplexing [6] and diversity gains [9]. The

multiplexing gains allow higher spectral efficiency whereas diversity gains provide more

reliable transmission with lower detection error rate over wireless fading channels. In this

chapter, we focus on the multiplexing gains provided by the MIMO systems as well as

the detection performance.

Significant capacity gains can be achieved with MIMO systems using a spatial multi-

plexing configuration. The capacity grows linearly with the number of transmissions of

individual data streams from the transmitter to the receiver [8]. In order to separate these

streams, several detection techniques have been developed:

• The optimum maximum likelihood detection (MLD) scheme which performs an

exhaustive search of the constellation map has exponential complexity with the
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increasing number of data streams and constellation points. [38]. Therefore, the

investigation of sub-optimal low-complexity detection schemes that can approach

the optimal performance is of fundamental importance.

• The tree search-based sphere decoding (SD) can successfully separate each data

stream with reduced complexity compared with the MLD [72]. However, the com-

plexity of the SD can be polynomial or exponential depending on the size of the con-

stellation map and the SNR values. The complexity of these algorithms is always

high for low to moderate SNR values with a high number of antenna streams [76].

For the coded systems, as we know, the detector is typically operated at low to

moderate SNRs.

• Linear detection (LD) [38] based on the minimum mean-square error (MMSE) or

the zero-forcing (ZF) criteria is a low-complexity scheme but the error performance

is unacceptable due to the co-channel interference (CCI).

• On the other hand, there are also other strategies to achieve the capacity gains of

MIMO systems, non-linear detection techniques such as the successive interfer-

ence cancellation (SIC) with a decision feedback (DF) structure [75], used in the

vertical Bell Labs layered space-time (V-BLAST) [7] have a low-complexity, while

achieving a reduced CCI as compared to their linear counterparts. However, these

decision-driven detection algorithms suffer from error propagation and performance

degradation.

Thus, all the mentioned detectors are either unable to provide satisfactory error rate

performance or have an impractical computational complexity. Therefore, the design of

alternative low-complexity detection algorithms is an important research topic for future

MIMO wireless communication systems.

In this work, inspired by the error propagation mitigation in decision feedback detec-

tion [48, 49, 76, 84, 92], we introduce a novel multiple feedback SIC (MF-SIC) algorithm

with shadow area constraints (SAC) strategy for detection of multiple data streams which

requires low computational complexity. The MF selection algorithm searches several

constellation points rather than one and chooses the most appropriate constellation sym-

bol as the decision. In the subsequent layers, signal cancellation is performed with these
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decisions. By doing so, even if a previous decision error is made, the correct cancella-

tion may still carry on subject to the condition that the right decision is included in the

feedback set. More points in the decision tree are considered and the error propagation

is efficiently mitigated. The selection procedure is constrained to one selected symbol in

each spatial layer to prevent the search space from growing exponentially, unlike sphere

decoders which employ a search procedure for more layers that increases the computa-

tional load. Furthermore, SAC further saves computational complexity by evaluating the

quality of decisions and avoiding unnecessary multiple feedback procedures for reliable

estimates.

The MF-SIC is also combined with a multi-branch (MB) [76] processing framework to

further improve the performance. A two stage iterative receiver structure is developed for

coded systems and a low-complexity soft-input soft-output (SISO) detector is proposed

based on the MF-SIC strategy. In addition, for soft-output nulling/cancelling based de-

tection, the MF-SIC strategy is combined with the soft interference cancellation (SC) for

the sake of reducing the required number of iterations to achieve the full iteration gain.

Simulation results show that the proposed schemes significantly outperform the con-

ventional SIC schemes and have a comparable performance with the interference free

bound.

The contributions of this chapter can be summarized as follows:

• A novel low-complexity MF-SIC detector is developed.

• MB processing is incorporated into the proposed MF-SIC to achieve a higher de-

tection diversity order and to yield a close to optimal performance.

• An iterative detection and decoding (IDD) receiver is introduced to approach the

interference free performance in coded systems.

• A study of the proposed MF-SIC and some existing detection schemes for MIMO

systems is conducted.
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3.3 System and Data Model

In this section, the mathematical models of both point-to-point and multiuser MIMO sys-

tems are given.

3.3.1 Point-to-point MIMO Systems

Let us consider a spatial multiplexing MIMO system with K transmit antennas and NR

receive antennas, where NR ≥ K. At each time instant [i], the system transmits K

symbols which are organized into a K × 1 vector

s[i] =
[
s1[i], . . . , sk[i], . . . , sK [i]

]T
, (3.1)

from a constellationA = {a1, a2, . . . , aC}, where (·)T denotes transpose and C denotes

the number of constellation points. In this work, the indices 1, . . . , k, . . .K are referred

to layers. The symbol vector s[i] is then transmitted over flat fading channel and the

signals are demodulated and sampled at the receiver equipped with NR antennas. Let us

assume the users a perfect synchronized. The received signal after demodulation, matched

filtering and sampling is collected in an NR × 1 vector

r[i] =
[
r1[i], r2[i], . . . , rNR

[i]
]T
, (3.2)

with sufficient statistics for detection

r[i] =
K∑
k=1

hksk[i] + v[i]

= Hs[i] + v[i],

(3.3)

where the elements hnR,k of the NR×K channel matrix H are the complex channel gains

from the k-th transmit antenna to the nR-th receive antenna and hk = [h1,k, . . . , hNR,k]
T .

The NR × 1 vector v[i] is a zero mean complex circular symmetric Gaussian noise with

covariance matrix E
[
v[i]vH [i]

]
= σ2

vI , where E[·] stands for expected value, (·)H de-

notes the Hermitian operator, σ2
v is the noise variance and I is the identity matrix. The

symbol vector s[i] has a covariance matrix E
[
s[i]sH [i]

]
= σ2

sI , where σ2
s is the signal

power.
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In the coded systems, the model (3.3) is used repeatedly to describe transmit streams

of data bits which are separated into blocks representing uses of channels. For a given

block, the symbol vector s is obtained by mapping x = [x1, ..., xj, ..., xK·J ] coded bits.

The quantity J is the number of bits per constellation symbol. The rate of uncoded trans-

mitted information is KJ bits per use of (3.3). For coded transmissions, the vector x

is designated to be the output of a forward error-correction code of rate R < 1 that in-

troduces redundancy. The transmission rate is then RKJ bits per (3.3) use. In the IDD

processing, the detector makes decisions by using the knowledge of correlations across

time instants [i], i = 0, 1, . . . , I provided by the channel decoder, and the channel decoder

needs to decode the bit information by using the likelihood information on all blocks

obtained from the soft output detector.

3.3.2 Multiuser MIMO Systems

A system model for the uplink of a multiuser MIMO system is similarly defined except

that we consider NR receive antennas at an access point (AP) and K users equipped with

a single antenna (NT = 1) at the transmitter end. This is effectively a space-division-

multiple access (SDMA) approach. At each time instant, the users transmit K symbols

which are organized into a K × 1 vector s[i] =
[
s1[i], s2[i], . . . , sk[i], . . . , sK [i]

]T
and each entry is also taken from a modulation constellationA. The symbol vector s[i] is

then passed through the flat fading channels and corrupted by the AWGN noise. The AP

collects the received signal in an NR × 1 vector r[i] which is given by

r[i] =
K∑
k=1

hksk[i] + v[i]

= Hs[i] + v[i],

(3.4)

where sk[i] is the transmitted symbol for user k, the term hk represents the NR× 1 vector

of channel coefficients of user k, and H is the matrix of the channel vectors for all users.

In this system we assume all K users are perfectly synchronized and transmit symbols

simultaneously. The symbols have a variance of σ2
s as the signal power. The model is

also used repeatedly to transmit a stream of data bits which are separated into blocks

representing uses of channels.

In the coded system, the message of each user is encoded separately by the channel
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codes with R < 1. For a given block, the symbol transmitted by user sk is obtained by

mapping it into the vector xk = [xk,1, ..., xk,j, ..., xk,J ] with the coded bits, where 2J = C.

Let us assume all users have same power received at the AP.

3.4 Proposed Multi-Feedback Receiver Design

This section is devoted to the description of the proposed MF concept and its application

in the SIC and QR decomposition based MIMO signal detection. A multi-branch process-

ing framework is also developed to improve the performance of the proposed detection

algorithms. In the following subsections, we only introduce the detection procedure with

a multiuser MIMO model, the application of a point-to-point MIMO system is straight-

forward.

3.4.1 The MF-SIC Detection

The structure of the MF-SIC scheme is depicted in Fig.3.1. The structure considers the

feedback diversity by using a number of selected constellation points as the candidates

when a previous decision is determined unreliable. In order to find the optimal feedback,

a selection algorithm is introduced. This selection scheme prevents the search space from

growing exponentially. The reliability of the previous detected symbol is determined by

the SAC, which saves the computational complexity by avoiding redundant processing

with reliable decisions.

In the following, we only describe the procedure for detecting ŝk[i] for user k. The

detection of other user streams ŝ1[i], ŝ2[i],. . . ,ŝK [i] can be obtained accordingly. The soft

estimation of the k-th user is obtained by

uk[i] = ωH
k řk[i], (3.5)

where the Nr × 1 MMSE filter vector is given by

ωk = (H̄kH̄k
H
+

σ2
v

σ2
s

I)−1hk, (3.6)
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Figure 3.1: Block diagram of the MF-SIC detection. A reliable interference cancellation

is performed. The SAC determines the reliability of the filter output, function MF(·)
generates L = [c1, . . . , cM ].

and H̄k denotes the matrix obtained by taking the columns k, k+1, . . . K of H , and řk[i]

is the received vector after the cancellation of previously detected k−1 symbols. For each

user, the soft estimation uk[i] is checked by the SAC, which decides whether this decision

is reliable according to the metric

dk = min
af∈A
{|uk[i]− af |}. (3.7)

where af denotes the constellation point which is the nearest to the soft estimation uk[i]

of the k-th user.

If dk > dth where dth is the predefined threshold, we say it is dropped into the shadow

area of the constellation map and this decision is determined unreliable as shown in

Fig.3.2. In the presence of the SAC, significant additional computational complexity

is saved compared to the scheme assumes all the estimates are unreliable. The MF-SIC

scheme has a comparable complexity to the conventional SIC scheme, as verified by our

studies.
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Figure 3.2: The shaded area is the unreliable region for QPSK and 16-QAM constellation.

In these figures we assume that a1 is the nearest constellation point to the soft estimation

uk[i].

Decision Reliable

If the soft estimation uk[i] is considered reliable, a hard slice will be performed in the

same way as in the conventional SIC scheme, the estimated symbol for each data stream

ŝk is obtained by ŝk[i] = Q{uk[i]} where Q{·} is signal quantization. The sliced symbol

is considered as a reliable decision for user k.

Decision unreliable

If the soft estimation is determined unreliable, a candidate vector is generated.

L = [c1, c2, . . . , cm, . . . , cM ] ⊆ A, (3.8)

L is a selection of the M nearest constellation points to the soft estimation uk[i]. The size

of L can be either fixed or determined by the signal-to-noise ratio (SNR). A higher SNR

corresponds to a smaller M which introduces a trade-off between the complexity and the

performance. The unreliable decision Q{uk[i]} is replaced by

ŝk[i] = cmopt , (3.9)

where cmopt is the optimal candidate selected from the list L.

The benefits provided by the MF algorithm are based on the assumption that the opti-

mal feedback candidate cmopt is correctly selected. This selection algorithm is described
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as follows:

In order to find the optimal feedback, a set of selection vectors b1, . . . , bm, . . . , bM

is defined, the number of these selection vectors M equals the number of constellation

candidates we used for each unreliable decision. For the k-th layer, a K × 1 vector bm

consists of the following elements,

• Previously detected symbols ŝ1[i], . . . , ŝk−1[i].

• cm a candidate symbol taken from the constellation for substituting the unreliable

decision Q{uk[i]} in the k-th layer.

• By using the above two terms, the detection of the following layers

k + 1, . . . , q, . . . , K-th is performed by the nulling and symbol cancellation which

is equivalent to a traditional SIC algorithm.

Therefore, the vector is formed as follows

bm[i] = [ŝ1[i], . . . , ŝk−1[i], cm, b
m
k+1[i] . . . , b

m
q [i], . . . , b

m
K [i]]

T , (3.10)

where bmq [i] is a potential decision that corresponds to the use of cm in the k-th layer,

bmq [i] = Q{ωH
q r̂

m
q [i]}, (3.11)

where q indexes a certain layer from the (k + 1)-th to the K-th.

r̂m
q [i] = řk[i]− hkcm −

q−1∑
p=k+1

hpb
m
p [i]. (3.12)

For each user, the same MMSE filter vector ωk is used for all the candidates, which

allows the proposed algorithm to have the computational simplicity of the SIC detection.

The proposed algorithm selects the candidates according to

mopt = arg min
1≤m≤M

||r[i]−Hbm[i]||2. (3.13)

The cmopt is chosen to be the optimal feedback symbol for the next layer as well as

a more reliable decision for the current user. The algorithm of the proposed MF-SIC is

summarized in TABLE 3.1.
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Table 3.1: The pseudo-code of the MF-SIC algorithm

0: Initialization řk[i] = r[i]

1: ωk = (H̄kH̄
H
k + σ2

vI)
−1hk, k = 1, . . . ,K

2: for k = 1 to K do % For each user

3: uk[i] = ωH
k řk[i]

4: if dk > dth, in shadow area

5: L = [c1, c2, . . . , cm, . . . , cM ]T

6: for m = 1 to M do % Multiple Feedback

7: for q = k to K do

8: r̂mk [i] = řk[i]− hkcm −
∑q−1

p=k+1 hpb
m
p [i]

9: bmq [i] = Q{ωH
q r̂mq [i]}

10: end for

11: end for

12: bm[i] = [ŝ1[i], . . . , ŝk−1[i], cm, bmk+1[i], . . . , b
m
q [i], . . . , bmK [i]]T

13: mopt = argmin1≤m≤M ||r[i]−Hbm[i]||2

14: ŝk[i] = cmopt

15: else

16: ŝk[i] = Q{uk[i]}

17: end if

18: řk[i] = r[i]−
∑n−1

k=1 hkŝk[i]

19: end for

3.4.2 MF-QRD Detection

As an alternative to the BLAST algorithms, the QR decomposition can also be used to

perform the detection in a serial manner. The QR function transforms the channel matrix

H as

H = QR, (3.14)

where Q is an NR × K matrix having orthogonal columns with unit norm and R is a

K ×K upper triangular matrix. By combining the received signal r[i], now the sufficient
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statistics for detecting s[i] become

r̃[i] = QHr[i] = Rs[i] + η[i], (3.15)

where the noise vector is η[i] = QHv[i]. For the purpose of detecting the signal element

s̃k[i] in the k-th layer (k = 1, 2, . . . , K) the corresponding soft decision uk[i] is computed

as

uk[i] = Q
{ r̃k[i]−

∑K
τ=k+1 yk,τ ŝτ [i]

yk,k

}
, (3.16)

where yk,k are the diagonal entries of R and r̃k[i] is the k-th element of r̃[i]. Note that

the detection ordering is determined by either SINR ordering or the power of the column

norm of the channel of each user (see Chapter 2). The application of column norm based

ordering is preferred due to the low complexity cost.

We may also integrate the MF processing with the conventional QR detector mentioned

above. The proposed MF-QRD scheme is described in Table 3.2 in which the received

signals are recovered from the K-th layer to the first layer. At any k-th layer, the soft

decision uk[i] is calculated by using (3.16) then a decision feedback procedure is carried

out as follows:

• A threshold dth is defined.

• For each k-th layer, we compute dk, the norm of the difference between uk[i] and

its nearest constellation points. The estimate uk[i] is considered reliable if dk < dth

otherwise we determine uk[i] as unreliable.

• In the first case, we obtain ŝk[i] by ŝk[i] = Q
{
uk[i]

}
.

• If uk[i] is decided unreliable, we generate a candidate vector L =

[c1, c2, . . . , cm, . . . , cM ]T that is a selection of M constellation points closest to uk[i]

and M can be either fixed or flexible which leads to distinct complexities.

Based on various cm at the k-th layer, the estimated signal b̂mq from the k − 1-th layer to

the first layer can be computed as

b̂mq =
1

yq,q

(
r̃k − yk,k[i]cm −

K∑
τ=q+1

yq,τ [i]b̂
m
τ [i]

)
, q = k − 1, . . . , 1, (3.17)
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Table 3.2: The pseudo-code of the MF-QRD algorithm
Initialization:

1: QR = H;

2: r̃ = QHr;

Multiple Feedback QRD Detection:

3: for k = NT , . . . , 1

4: uk[i] =
(
r̃k −

∑NT
ι=k+1 rk,ιŝι

)
/rk,k;

5: if uk[i] is unreliable

6: L = [c1, c2, . . . , cm, . . . , cM ]T ;

7: r̃′k = r̃ −
∑NT

ι=k+1 yk,ιŝι;

8: for m = 1 to M do

9: for q = k − 1 to 1 do

10: b̂mq =
(
r̃′k − yk,kcm −

∑NT
τ=q+1 yq,τ b̂

m
τ

)
/yq,q;

11: end for

12: bmk [i] =
[
b̂m1 , . . . , b̂mq , . . . , cm, ŝk+1,NT

]
;

13: end for

14: mopt = arg min
1≤m≤M

||r[i]−Hbmk [i]||2;

15: ŝk[i] = copt;

16: else

17: ŝk[i] = Q
[
uk[i]

]
;

18: end if

19: end for

where rk[i] is the k-th element of vector r̃k[i]. Thus, for each cm we have

bmk [i] =
[
b̂m1 [i], . . . , b̂

m
q [i], . . . , cm, ŝk+1,K [i]

]
, (3.18)

where the row vector ŝk+1,K = [ŝk+1, ŝk+2, . . . , ŝK ] stands for the existing detected results

from the k+1-th layer to the K-th layer. Finally, the optimum index mopt is chosen under

the ML criterion (3.13), such that the corresponding copt is determined as ŝk[i].

3.4.3 MF-SIC with Multi-Branch Processing

This section presents the structure of the proposed MF-SIC with multi-branch processing

(MB-MF-SIC). The MB-MF-SIC structure is developed based on the work reported in
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Figure 3.3: Block diagram of the proposed MB-MF-SIC detector.

[76] which contains multiple parallel processing branches of SICs with different ordering

patterns as shown in Fig.3.3.

In the l-th branch, the MF-SIC scheme successively computes the detected symbol

vector ŝl[i] as

ŝl[i] = [ŝl,1[i], ŝl,2[i], . . . , ŝl,K [i]]
T . (3.19)

This procedure has been detailed in the previous subsections. The term ŝl[i] represents

the K×1 ordered estimated symbol vector, which is detected according to the IC ordering

pattern T l, l = 1, . . . , L for the l-th branch. The IC on the received vector ř[i] is given as

follows: řl,k[i] = r[i], k = 1,

řl,k[i] = r[i]−
∑k−1

j=1(H
′)j ŝl,j[i], k ≥ 2,

(3.20)

where the transformed channel matrix H ′ is obtained by

H ′ = T lH . (3.21)

By transforming the channel matrix, the columns of the channel matrix H are permuted.

The serial processing from layer k = 1 to k = K for each permuted channel H ′ represents

the permuted cancellation order in each branch l [76].

The term (H ′)k represents the k-th column of the ordered channel H ′ and ŝl,k denotes

the estimated symbol for each data stream obtained by the MF-SIC algorithm. At the end

of each branch we can transform ŝl[i] back to the original order s̃l[i] by using T l as

s̃l[i] = T T
l ŝl[i]. (3.22)

Basically, the MB procedure modifies the original cancellation order in a way that the
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detector obtains a group of different estimated vectors. At the end of the MB structure,

the algorithm selects the branch with the minimum Euclidean distance according to

lopt = arg min
1≤l≤L

J(l), (3.23)

for each branch,

J(l) = ||r[i]−Hs̃l[i]||2 = ||r[i]−H ′ŝl[i]||2. (3.24)

In the MB-MF-SIC implementation, the metric J(l) of each MF-SIC branch can be

obtained directly from (3.13). The final detected symbol vector is

s̄[i] = s̃lopt [i] = T T
lopt
ŝlopt [i]. (3.25)

This MB scheme can bring a close-to-optimal performance, however, the exhaustive

search of L = K! branches is not practical. To develop an ordering scheme with low com-

plexity, which renders itself to practical implementation, is of great interest. Therefore,

a number of branch reduction sub-optimal schemes were reported in [76], namely fre-

quently selected branches (FSB), pre-stored patterns (PSP) and listing patterns approach

(LPA). In this thesis, the FSB is used as the sub-optimal solution for selecting the L

branches. The FSB algorithm builds a codebook which contains the ordering patterns for

the most likely selected branches and the required number of branches to obtain a near-

optimal performance is greatly reduced. In order to build FSB codebook, we identify

the statistics of each selected branch and construct the codebook with the L most likely

selected branches to be encountered. Detailed description of these sub-optimal ordering

schemes are included in [76].

3.5 Iterative Processing

The MF aided detector for systems employing channel coding is considered in this sec-

tion. The IDD receiver structure is described in the first subsection and followed by the

introduction of the candidate symbol selection algorithm used in the MF-SIC and the

branch selection algorithm with the MB configuration.
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Figure 3.4: Transmitter and receiver structure with iterative detection and decoding. The

subscripts “1” and “2” denote the variables associated with the inner SISO component and

the outer SISO component respectively. The upper-script (·)′ denotes the corresponding

bit vector is interleaved.

3.5.1 Iterative Processing with Coded Point-to-Point MIMO Systems

As depicted in Fig.3.4, for each transmission, the message bits are encoded by the chan-

nel encoder and interleaved before modulation and multiplexing. The iterative (turbo)

receiver consists of two stages: a soft-input soft-output (SISO) detector and a SISO max-

imum a posteriori (MAP) decoder. These stages are separated by interleavers and dein-

terleavers.

At the output of the SISO detector the interleaved a posteriori log-likelihood ratio

(LLR) of the j-th encoded bit of the k-th symbol is given by

Λ1[x
′
k,j] = log

P (x′
k,j = +1|r,H)

P (x′
k,j = −1|r,H)

,

= log
P (x′

k,j = +1|u)
P (x′

k,j = −1|u)
.

(3.26)

With the MF-SIC processing, we set u = s+ veff, where veff is the effective noise factor

after the MMSE filtering in each layer. By assuming that the k-th layer uk = sk + veff is

statistically independent from other layers [27], this leads to the approximation

Λ1[x
′
k,j] ≈ log

P (x′
k,j = +1|uk)

P (x′
k,j = −1|uk)

, (3.27)
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Using Bayes’s rule, the Λ1[x
′
k,j] can be rewritten as

Λ1[x
′
k,j] = log

P (uk|x′
k,j = +1)

P (uk|x′
k,j = −1)

+ log
P (x′

k,j = +1)

P (x′
k,j = −1)

= λ1[x
′
k,j] + λp

2[x
′
k,j]

(3.28)

where the term

λp
2[x

′
k,j] = log

P (x′
k,j = +1)

P (x′
k,j = −1)

(3.29)

represents the a priori information for the coded bits x′
k,j , which is obtained by the MAP

decoder in the previous iteration. The superscript p denotes the value is obtained from the

previous iteration. For the first iteration we assume λp
2[x

′
k,j] = 0 for all bits. The first term

λ1[x
′
k,j] denotes the extrinsic information which is computed based on the received signal

r and a priori information λp
2[x

′
k,l] where l ̸= j.

For the detector, the coded bit extrinsic LLR for the k-th layer is obtained as

λ1[x
′
k,j] = log

∑
ac∈A+

k,j
P (uk|sk = ac) exp(La(ac))∑

ac∈A−
k,j

P (uk|sk = ac) exp(La(ac))
(3.30)

whereA+
j andA−

j denotes the subsets of constellationA where the bit x′
j takes the values

1 and 0 respectively. La(ac) denotes the a priori symbol probability for symbol ac. Since

P (uk|sk = ac) =
1

πσ2
eff

exp(
−|uk − sk|2

σ2
eff

), (3.31)

where σ2
eff represents the variance of effective noise of uk. We rewrite (3.30) as

λ1[x
′
k,j] = log

∑
ac∈A+

j
exp(−|uk − sk|2/σ2

eff)
∏

(l ̸=j) P (x′
k,l)∑

ac∈A−
j
exp(−|uk − sk|2/σ2

eff)
∏

(l ̸=j) P (x′
k,l)

, (3.32)

where P (x′
k,j) is a priori probability of a bit x′

j and obtained by its a priori LLR as [56]

P (x′
k,j) =

1

2
[1 + x′

k,j tanh(
1

2
λp
2[x

′
k,j])]. (3.33)

Then λ1[x
′
k,j] is de-interleaved and fed to the MAP decoder of the k-th layer as the a

priori information. The MAP decoder calculates a posteriori LLR of each code bit by

using the trellis diagram as [92]

Λ2[xk,j] = λ2[xk,j] + λp
1[xk,j]. (3.34)

The output of the MAP decoder is obtained by the a priori information λp
1[xk,j] , the ex-

trinsic information provided by the decoder. The a posteriori LLR of every information

P. Li, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 3. MULTIPLE FEEDBACK SUCCESSIVE INTERFERENCE CANCELLATION FOR

MULTI-ANTENNA SYSTEMS 52

bit is also collected by the MAP decoder which is used to make the decision of the mes-

sage bit at the last iteration. The extrinsic information obtained by the MAP decoder is

fed back to the SISO detector as the a priori information of all the spatial layers. At the

first iteration, λ1 and λp
2 are statistically independent and as the iterations are performed

they become more correlated until the improvement through iterations diminishes.

We assume that the output of the MMSE filter uk[i] is Gaussian, therefore, the soft

output of the SISO detector for the k-th layer is written as [92]

uk[i] = Vksk[i] + µk[i], (3.35)

where Vk is a scalar variable which is equal to the k-th layer’s signal amplitude and µk[i]

is a Gaussian random variable with variance σ2
eff,k, since

Vk[i] = E[s∗k[i]uk[i]] (3.36)

and

σ2
eff,k = E[|uk[i]− Vk[i]sk[i]|2]. (3.37)

The estimates of V̂k[i] and σ̂2
eff,k can be obtained by time averages of the corresponding

samples over the transmitted packet. There are also alternative solutions to obtain the

variance value σ2
eff,k and we leave these details to the reference [15] and [19].

3.5.2 Iterative Processing with Coded Multiuser MIMO Systems

In this section, we present the proposed MF-SIC detector for coded systems which em-

ploy convolutional codes with IDD for the multiuser MIMO systems. We show that a

reduced number of turbo iterations can be used with the proposed schemes as compared

to previously reported turbo multiuser detectors [19] [20]. This is important to reduce the

delay of wireless systems which rely on iterative processing techniques.

Similar to point-to-point configurations, the receiver consists of the following two

stages: a SISO detector and a bank of SISO MAP decoders for the corresponding users.

These stages are separated by interleavers and deinterleavers. Specifically, the estimated

likelihoods of the convolutionally encoded bits are computed by the detector and these

estimates are deinterleaved and serve as input to the MAP decoders. The MAP decoder
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Figure 3.5: Receiver structure with iterative detection and decoding. The multiuser de-

tector separates the data for each user and use the a priori information to enhance its

performance.

generates a posteriori probabilities (APPs) for each user’s encoded bits, and therefore the

soft estimate of the transmitted symbol is obtained. The procedure discussed above is

repeated in an iterative manner. The difference between the point-to-point and multiuser

iterative receiver structure is that in the multiuser scenario, each user’s message are coded

separately but the detection is performed jointly.

At the output of the SISO detector the a posteriori log-likelihood ratio (LLR) of the

j-th convolutionally encoded bit of the k-th user’s block is given by

Λ1[xk,j] = log
P (xk,j = +1|r)
P (xk,j = −1|r)

, (3.38)

Using Bayes’s rule, Λ1(xk,j) can be rewritten as

Λ1[xk,j] = log
P (r|xk,j = +1)

P (r|xk,j = −1)
+ log

P (xk,j = +1)

P (xk,j = −1)

= λ1[xk,j] + λp
2[xk,j], k = 1, . . . , K.

(3.39)

All the terms mentioned in the above functions are similarly defined in the previous sub-

section. The multiuser detector jointly detect the signals transmitted by all the K users.
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For the first iteration we assume λp
2[xk,j] = 0 for all users. The first term λ1[xk,j] is ob-

tained the based on the received signal of the joint detection r and a priori information

λp
2[bk,τ ] where τ ̸= j. Similar to point-to-point configuration as mentioned in the previous

subsection, for the detector, the coded bit extrinsic LLR for the k-th user is obtained as

λ1[xk,j] = log

∑
ac∈A+

k,j
P (uk|sk = ac) exp(La(ac))∑

ac∈A−
k,j

P (uk|sk = ac) exp(La(ac))
, (3.40)

where A+
k,j and A−

k,j denote the subsets of constellation A where the bit xk,j takes the

values 1 and 0, respectively. The quantity La(ac) denotes the a priori symbol probability

for symbol ac and the probability density of uk given sk has been given in (3.31).

Then λ1[xk,j] is de-interleaved and fed to the corresponding MAP decoder of the k-th

user as the a priori information. The MAP decoders calculate the a posteriori LLR of

each code bit by using the trellis diagram as [92]

Λ2[xk,j] = λ2[xk,j] + λp
1[xk,j]. (3.41)

The output of the MAP decoder is obtained by the a priori information λp
1[xk,j] and the

extrinsic information provided by the decoder. The a posteriori LLR of every informa-

tion bit is also collected by the MAP decoder which is used to make the decision of the

message bit after the last iteration. The extrinsic information obtained by the K MAP

decoders is fed back to the SISO detector as the a priori information of all users. At the

first iteration, λ1 and λp
2 are statistically independent and as the iterations are performed

they become more correlated until the improvement through iterations diminishes.

The structure of the proposed MF-SIC with soft cancellation (MF-SIC-SC) multiuser

detector is described in terms of iterations. In the first iteration, the a priori information

provided by the decoder is zero which heavily degrades the performance of parallel inter-

ference cancellation (PIC) based detection. Therefore, instead of using the PIC based soft

cancellation (SC/MMSE) [56] [19], in our approach, the proposed MF-SIC algorithm is

used in the first iteration to calculate the extrinsic information and to feed it to the MAP

decoders for all the users. The soft estimates uk[i] are used to calculate the LLRs of

their constituent bits. We assume uk[i] is Gaussian, therefore, the soft output of the SISO

detector for the k-th user is written as [92]

uk[i] = Vksk[i] + µk[i], (3.42)
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where Vk is a scalar variable which is equal to the k-th users amplitude and µk[i] is a

Gaussian random variable with variance σ2
eff, since

Vk[i] = E[s∗k[i]uk[i]] (3.43)

and

σ2
eff = E

[
|uk[i]− Vk[i]sk[i]|2]. (3.44)

The estimates of V̂k[i] and σ̂2
µk

can be obtained by time averages of the corresponding

samples over the transmitted packet.

After the first iteration, the SC/MMSE performs PIC by subtracting the soft replica of

interference components from the received vector as

ř[i] = r[i]−Hz[i], (3.45)

where z[i] = [u1[i], . . . , uk−1[i], 0, uk+1[i], . . . , uK [i]] and a filter is developed to further

reduce the residual interference as

ωk[i] = argmin
ωk

E{|sk[i]− ωH
k ř[i]|2}, (3.46)

where the soft output of the filter is also assumed Gaussian. The first and the second-order

statistics of the symbols are also estimated via time averages of (3.43) and (3.44). The

MF-SIC processing is only applied to the first iteration of the IDD receiver, the proposed

MF + selection is introduced in the SIC step to yield refined estimation of symbols. As

for MB-MF-SIC-SC, the best MF-SIC-SC branch is selected by ML criterion, in order to

provide symbol and bit estimates of the coded information.

3.6 Simulations

In this section, we evaluate the BER performance of the proposed algorithms in both

point-to-point MIMO and multiuser MIMO scenarios with and without channel coding.

We assume that the cancellation order has been sorted according to a decreasing order

of channel column norm. Because SD has the MLD performance, provided the radius is

appropriately selected. In the simulations, we only show the curves of the SD instead of

both of them. Let us assume the proposed algorithms and all their counterparts operate
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on channels with the independent and identically-distributed (i.i.d) random flat fading

model and assume that the channel coefficients are taken from complex Gaussian random

variables with zero mean and unit variance. We assume QPSK modulated symbols with

anti-Gray mapping are transmitted by the antennas/users unless stated otherwise.

3.6.1 Point-to-point MIMO Systems

Fig.3.6 shows the performance of the MF-SIC and MB-MF-SIC with 4 × 4 and 8 × 8

configurations. In [76], both the optimum ordering patterns codebook and the frequently

selected branches (FSB) codebook were designed to construct the transformation matri-

ces T l. The optimum codebook, which can be obtained using the MATLAB function

PERM(NT : −1 : 1), contains NT ! ordering patterns. The FSB codebook was re-

ported with a smaller size, in this case, the FSB index [1,2,5] for a 4 × 4 system and

[1,2,3,5,4,13,17,21,19] for an 8 × 8 system. The elements in the FSB codebook indi-

cate the indices of the patterns in the optimum codebook. Other parameters are set as

dth = 0.5 for the threshold of SAC and M = 4 is the size of MF set L. As for the SD,

the radius dSD is chosen to be a scaled version of the noise variance [72]. For an 8 × 8

system, the SD requires 8 × 104 multiplications per symbol detection, the MB-MF-SIC

requires 4.6× 103 multiplications in SNR = 12 dB. When SNR = 8 dB is the case, the

SD requires 2.4 × 105 multiplications while the proposed MB-MF-SIC scheme requires

5.5 × 103 multiplications. The simulation results indicate that a better performance can

be achieved when a larger candidate list L is considered. The chosen of above parameters

are on the basis of simulation trials.

The lattice basis reduction (LR) [79] has been proposed to transform the channel ma-

trix into an equivalent but better conditioned one. The LR aided MMSE SIC detector

(LR-SIC) is able to achieve the same diversity order with the optimal detectors as plotted

in Fig.3.7. In this figure, we compare the LR aided algorithm with the proposed scheme.

The LR aided detection has the ability to obtain the full diversity gain, but with sev-

eral dB poorer coding gain than optimal ML detection. In our simulation, the LR-SIC

outperforms the MF-SIC at high SNR region, however the same curve shows a worse

performance in the low SNR region. Furthermore, with the increased number of parallel

branches, the MF-SIC significantly outperforms the LR-SIC and the optimal performance
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Figure 3.6: Uncoded bit-error-rate with QPSK modulation over flat fading. The proposed

schemes approach the performance of SD in both 4 × 4 (solid line) and 8 × 8 (dash

line) systems while requiring a lower complexity. MF-SIC denotes the multiple feedback

detection. MB denotes the multiple branch version, and C-SIC denotes conventional SIC

algorithm.
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Figure 3.7: Uncoded bit-error-rate of a 6 × 6 MIMO system with QPSK modulation,

MMSE based detection is considered. Complex lattice reduction is adopted with the LR-

SIC, the number of constellation candidates M is 4 and threshold dth equals 0.5. MB is

incorporated to improve the performance and the number of branches is L = 9.

can be obtained within a low SNR region.

The real communication systems usually incorporate with error-control coding in or-

der to lower the SNR requirement. The IDD receiver structure may be introduced to

obtain a good performance. For an IDD architecture, we employ a CC with the constraint

length equal to 2. A packet with 998 message bits are encoded with a g = (7, 5)oct con-

volutional encoder and 2000 coded bits are interleaved as a transmitting block. These

bits are modulated to 1000 QPSK symbols with anti-Gray coding. Instead of using the

perfect channel information in previous results, Fig.3.8 shows the simulation of iterative

decoding with imperfect channel information. When a least-squares (LS) algorithm is

used, we employ a training sequence with 40 symbols which are known at the receiver

to perform channel estimation, and the forgetting factor is λLS = 0.998. In this figure,
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Figure 3.8: Coded bit-error-rate performance of a QPSK 4 × 4 MIMO system. The MF-

SIC (M = 4) algorithm outperforms C-SIC in 1st iteration (solid) and 4th iteration (dash)

and approaches the SIC detection with perfect symbol cancellation (Perfect-SIC).
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we compare the proposed MF-SIC with the conventional SIC (C-SIC) and the SIC algo-

rithm with perfect interference cancellation (Perfect-SIC), with the Perfect-SIC, we mean

the transmitted symbol is removed according to the cancellation order before the MMSE

filtering. The curves denote that the proposed soft-output MF detector outperforms the

C-SIC algorithm with the channel estimation errors and approaches the SIC with perfect

cancellation (Perfect-SIC).

3.6.2 Multiuser MIMO Systems

The bit-error-rate (BER) performance of the MF-SIC and MB-MF-SIC is compared with

the existing detection algorithms with uncoded systems and a different number of users.

For channel coded systems, we simulate the IDD schemes with the PIC based soft can-

cellation (SC) detector [19] and compare it with the SIC-SC which uses SIC for the first

iteration and the SC is performed for the following iterations [21] and MF aided SIC-

SC detectors (MF-SIC-SC) as well as its multiple-branch version (MB-MF-SIC-SC). The

computational complexity for the proposed detection algorithms is also shown in this

section.

Let us consider the proposed algorithms and all their counterparts in the independent

and identically-distributed (i.i.d) random flat fading model and the coefficients are taken

from complex Gaussian random variables with zero mean and unit variance. As the chan-

nel code, we employ a convolutional code with the rate R = 0.5 and constraint length 3.

For each user, 497 message bits are encoded with a NSC with the polynomial g = (7, 5)oct

and 1000 coded bits are interleaved as a transmitting block, these bits are modulated to

500 QPSK symbols with anti-Gray coding. We also assume that the cancellation order of

the conventional SIC and MF-SIC are determined by the channel norm.

Overloaded systems represent a worst case situation for receivers because of the high

level of interference. In practice, it is very unlikely to have a sufficient number of receive

antennas for decoupling the spatial signal [73]. In Fig.3.9 a system with overloaded trans-

mitting users for uncoded transmission is considered. We use NR = 4 receive antennas in

the AP and the Eb/N0 = 12 dB at the receiver end. The FSB codebook [76] was designed

to construct the transformation matrices for MB processing. In this case, [1,2] for L = 2
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Figure 3.9: Uncoded MU-MIMO system with Eb/N0 = 12dB, NR = 4. The proposed

MF-SIC and MB-MF-SIC approach the maximum likelihood performance with 4 users.

In the overloaded case, the MB-MF-SIC approaches the SD with small performance loss

with 6 users.

and [1,2,3,5] for L = 4. Other parameters are set as dth = 0.5, and M = 4. As for the SD,

we implement the standard SD [77] to achieve the optimal MLD performance, the radius

dSD is chosen to be a scaled version of the noise variance [72]. The linear detector (LD)

and the lattice-reduction aided SIC (LR-SIC) [79] are also compared in this plot.

Another simulation is carried out with 16-QAM symbols and 4 users. The SNR against

BER curves are plotted in Fig.3.10, where we use M = 2, 4, 8. The threshold is set

to dth = 0.05, 0.15, 0.2 respectively, and we consider a different number of branches

L = 2, 6 for MB-MF-SIC processing. The proposed MF-SIC detection algorithm is

able to achieve a better performance when a smaller threshold distance is selected. The

performance of the proposed detector can be further improved when a larger feedback list

is selected. Full diversity order can be obtained when a sufficient number of branches are

used.

In Fig.3.11, the complexity is given by counting the required complex multiplications

as the number of users increases. Each MF-SIC branch has a complexity slightly above

P. Li, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 3. MULTIPLE FEEDBACK SUCCESSIVE INTERFERENCE CANCELLATION FOR

MULTI-ANTENNA SYSTEMS 62

5 7 9 11 13 15 17 19 21 23 25

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

A
ve

ra
ge

 B
E

R

 

 

SIC
MF−SIC M=4 d

th
=0.2

MF−SIC M=4 d
th

=0.15

MF−SIC M=4 d
th

=0.05

MF−SIC M=2 d
th

=0.15

MF−SIC M=8 d
th

=0.15

MB−MF−SIC M=4 d
th

=0.15 L=2  

MB−MF−SIC M=4 d
th

=0.15 L=6

LR−SIC
SD (ML)

Figure 3.10: Uncoded bit-error-rate against SNR for a 4 user system with 4 receive anten-

nas and 16-QAM modulation over flat fading, the shadow area threshold has an impact

on the slope of the curves. Perfect channel information is assumed known at the receiver.

the SIC while it achieves a significant performance improvement. We also compared the

complexity in terms of the average number of floating-point operations (FLOPS) required

per symbol detection by simulations. A simulation performed with the Lightspeed toolbox

[94] and Eb/N0 = 12 dB has shown that for a 16-QAM system with 8 users, the MF-SIC

algorithm requires only 2938 FLOPS and a MB-MF-SIC with 9 branches requires 26442

FLOPS while a fixed complexity SD (FSD) [78] requires 75120 FLOPS. It should be

noted that FSD is one of the lowest complexity SD algorithms that are known.

For a 4 × 4 system and Eb/N0 = 16 dB, the MF-SIC employs the SAC procedure,

the MF concept and the selection algorithm. This leads to the processing of only 6.1%

on average over the layers of the estimated symbol with the MF and selection algorithm,

whereas for the remaining symbols, the conventional quantization is performed by ŝk[i] =

Q{uk[i]}. In terms of processing for each layer, the MF-SIC requires processing 13.34%

of the symbols in the first layer, followed by 5.21%, 2.51% and 2.15% for the remaining

3 layers, respectively.
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the proposed MB-MF-SIC scheme has L times the complexity of the MF-SIC which has

a comparable complexity with the conventional SIC. M = 4, dth = 0.5, L = 4.
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required iterations are saved in obtaining the converged performance with the proposed

detectors at both Eb/No = 12 dB and Eb/No = 15 dB. M = 4, dth = 0.5, L = 6.
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Figure 3.13: Convolutional coded system with K = 8 users. The proposed detectors have

significant performance gains compared with the SC and SIC-SC detector in their first

iteration with both perfect (solid line) and imperfect channel information (dash line).

For coded systems, the BER against the number of iterations is depicted in Fig.3.12.

We use K = 8 times 500 QPSK symbols transmitted over a Rayleigh fading channel,

which are collected by NR = 8 antennas. Compared with the previously reported soft

cancellation (SC) and SIC-SC, the proposed MF-SIC-SC and MB-MF-SIC-SC schemes

with 2 turbo iterations can obtain a better BER performance than other schemes with 4

iterations, thus the decoding delay is reduced. Fig.3.13 shows the simulation with perfect

and imperfect channel estimation, where a least squares (LS) algorithm is used to estimate

the channel weights. We employ a training sequence with 40 symbols which are known at

the receiver and the forgetting factor is λLS = 0.998. The single-user BER performance

describes the performance in an interference free scenario. We can see from this plot that

after 3 iterations the slope of the MU-MIMO performance curves are almost the same

as the single-user curve with 3 dB (MF dth = 0.5 M = 4) and 2 dB (MB-MF L = 6)

performance loss.
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3.7 Summary

In this chapter, we discussed the low-complexity detection algorithms and compared the

results of various configurations for MIMO systems. A novel MF-SIC receiver for point-

to-point and multiuser MIMO systems were proposed. The proposed schemes were also

combined with the multiple branch and iterative detection and decoding strategy. It was

shown that the new detection schemes significantly outperform existing SIC receivers,

mitigate the phenomenon of error propagation with low processing delay.
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4.1 Overview

In this chapter, a novel low-complexity decision feedback detection algorithm with con-

stellation constraints (DFCC) is proposed for MIMO systems. Enhanced interference
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cancellation is achieved by introducing multiple constellation points as decision candi-

dates. A complexity reduction strategy is also developed to avoid redundant processing

with reliable decisions. For time-varying channels, the proposed receiver updates the fil-

ter weights using a recursive least squares (RLS) based algorithm. This efficient detector

is also incorporated in a multiple branch (MB) structure to achieve a higher detection

diversity order. A soft-output DFCC detector is also proposed as a component of an itera-

tive detection and decoding receiver scheme. Simulations show that the proposed DFCC

technique has a complexity as low as the adaptive DF detector while it significantly out-

performs the ordered successive interference cancellation (OSIC) processing.

4.2 Introduction

Spatially multiplexed MIMO wireless communications have the ability to increase the

channel capacity through additional data streams [5]. In order to separate these streams,

several detection techniques have been developed. The optimal MLD [12] scheme has

exponential complexity with the number of streams and the constellation points, which is

impractical for MIMO systems even with a moderate number of transmit antennas. The

newly developed sphere decoding algorithms [53] [18] approach the optimal performance

with reduced complexity [72], however, they still have a lower bound complexity which

is polynomial or exponential depending on the number of streams or SNR [74]. The

sub-optimal decision feedback (DF) [75] detection algorithms such as ordered successive

interference cancellation (OSIC) or vertical Bell Labs layered space time (V-BLAST) [7],

[76] offer a reasonable tradeoff between performance and complexity in MIMO systems.

The DF architecture is able to provide high spectral efficiencies when multiple transmit

antennas are deployed, however, the application to systems with time-varying channels is

still difficult due to the excessive computational load [81]. The filter vectors required to

be updated at each time instance and the channel state information should be tracked, the

matrix inversion and other related operations in the time domain need a significant number

of computations. To address this drawback, some simpler strategies have been proposed,

in [81], the interpolation based channel tracking is deployed and the OSIC detection is

updated in a block-wise fashion, and a complexity and performance trade off is therefore
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established.

As a promising alternative, adaptive techniques may also be deployed for MIMO sys-

tems in time-varying channels [82–86], where the work reported in [86] is a blind algo-

rithm and the others are data-aided techniques. The inter-stream interference introduced

by spatial multiplexing can be suppressed by successively detecting the transmitted sym-

bols at each time. In [82], the authors developed a low-complexity data-aided adaptive

technique for detecting the time-varying channels based on the so-called generalized de-

cision feedback equaliser GDFE [75] structure, the weight vectors are updated using the

recursive least squares (RLS) based algorithm. However, all these above mentioned algo-

rithms have performances far from optimal. In recent work [76], a multiple-branch (MB)

based adaptive receiver structure is examined by modifying the nulling and cancellation

ordering of the original DF detector in an appropriate way such that the detector obtains

a group of L different estimate vectors and then selects the most likely estimates, this

method is able to attain a near-optimal performance but the detection complexity is L

times higher than the structure with a single branch (SB).

Since the last decade, the invention of turbo codes [17] inspired the development of

their associated iterative detection and decoding (IDD) rules. The so called turbo concept

is applied to many communication systems such as turbo equalization in [87], multi-user

detection (MUD) in [88] etc. In such systems, the soft-input soft-output (SISO) detector

is required to produce soft-decision values. The optimal maximum a posteriori (MAP)

detection [89] has an exponential complexity, which triggered an extensive study of low-

complexity SISO detectors. In [18] a list version of SD has been used to compute the a

posteriori bit probabilities by counting selected symbol combinations. Similar techniques

are also used in [67] and [27]. On the other hand, the DF SISO detectors such as [90]

and [91] have a lower complexity owing to their linear filter structure. However, the

performance of these DF detectors is severely limited by the effect of error propagation

(EP) [48, 49], [92, 93] and the fact that they only search a small portion of the decision

tree.

In this chapter, an innovative DF technique for MIMO detection in time-varying chan-

nels is developed. With this novel low-complexity detector, the optimal performance

is approached through the introduction of constellation constraints (CC). In each time
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instance, the estimates of the symbols made by the filter are refined by a scheme that

uses several selected constellation points to produce a number of tentative decisions.

The scheme then selects the candidate that yields the minimum Euclidean distance as

the replacement. Thanks to this algorithm, 1) an enhanced interference cancellation can

be achieved since the feedback symbols are much more reliable than the original; 2)

the refined symbol estimation produce better information for updating the adaptive fil-

ter weights by the RLS algorithm in each time instance; 3) unlike the SD algorithms

which preserve several branches as the tentative decisions, the proposed detector pre-

serves only one branch in the decision tree which prevents the complexity from growing

exponentially. For soft-output processing, the proposed detector uses the produced ten-

tative decisions to form a “list” to compute the likelihood for each transmitted bit, the

probability of decision errors is significantly reduced. Computer simulations indicate that

the proposed decision feedback detection with constellation constraints (DFCC) signif-

icantly outperforms the conventional DF schemes (i.e. [82] [83] ) and approaches the

optimal performance with very low additional detection complexity.

The main contributions of this chapter are:

• A decision feedback based algorithm is developed for detecting the signal transmit-

ted in the time-varying MIMO channels.

• A reliability checking scheme named CC is introduced to improve the efficiency of

the detector.

• The MB processing [76] is incorporated into the scheme to achieve a higher detec-

tion diversity and obtain a close-to-optimal performance for systems with a larger

transmit antenna elements.

• The error performance and the detection complexity of the proposed algorithm are

compared with several popular existing detection schemes.

• A soft-output DFCC is developed as a component of an iterative detection and de-

coding receiver structure.

• Unlike the scheme introduced in the previous chapter, the proposed DFCC algo-

rithm is able to operate on a time-varying MIMO channel. Furthermore, a more
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sophisticated CC algorithm is introduced to further improve the efficiency of the

detection compared with the SAC algorithm introduced in the previous chapter.

4.3 Data and System Model

The system and data model adopted in this chapter is similar to that defined in Chapter 3,

in terms of both point-to-point and multiuser MIMO Systems.

We consider a constellation A = {a1, a2, . . . , aC}, where C denotes the num-

ber of constellation points. In this chapter, the symbol vector s[i] is transmitted over

time-varying channels H [i] instead of the quasi-static Rayleigh fading channels assumed

in Chapter 3. By quasi-static, me mean that the channel is constant within one frame

and changes in the next frame such that the channels in successive frames are uncor-

related [15]. In terms of time-vary channels, the channel weights change many times

inside a frame time duration and correlation is introduced between the successive channel

weights. Jakes model [97] is widely adopted to model this type of channels, because of

its simplicity. With Jakes model, a Rayleigh fading channel subject to a given Doppler

spectrum is synthesized by a number of sinusoids. The Rayleigh amplitude can be approx-

imated when a larger number of sinusoids are introduced [51]. In this chapter, the Jakes

model is applied for simulations, and the variance of channel is subject to the normalized

Doppler frequency shift, which is usually denoted as fdT .

In order to emphasize the problem that interests us, in our point-to-point MIMO sys-

tem, we assume the antennas transmit symbols simultaneously. On the other hand, in a

multiuser MIMO scenario, the K users are assumed perfectly synchronized and transmit

their symbols in the same time slot. The synchronization problems may be found in the

references such as [33], [85].

In order to reduce the ordering complexity of the decision feedback system, channel

norm ordering is applied at the receiver. As introduced in Chapter 2, the order of detecting

the signal can be configured corresponding to a decreasing order of ∥hk∥ where k =

1, . . . , K.

∥h1∥2 ≥ ∥h2∥2 ≥ . . . ≥ ∥hK∥2, (4.1)
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the column norm based ordering requires ordering the channel only once, which has the

complexity significantly lower than the SINR based ordering. In the following part of this

chapter, this criterion is used to decide the optimal NCO.

4.4 Proposed Decision Feedback Detector

This section is devoted to the description of the proposed DFCC concept and its applica-

tion in a multi-branch processing framework. In the following parts of this chapter, we

only introduce the detection procedure with a point-to-point MIMO system model, the

application of a multiuser MIMO system is straightforward.

The structure and the signal processing model of the proposed DFCC detector is de-

picted in Fig.4.1. The received signal r[i] is filtered by a NR × 1 forward filter ωH
f,k[i]

which is acting as the nulling vector of the OSIC algorithm. Then for each data stream

k = 1, . . . , K, the decisions are accumulated and cancelled by the (k − 1)-dimensional

decision backward filter ωH
b,k[i]. Let ŝ[i] =

[
ŝ1[i], ŝ2[i], . . . , ŝK [i]

]T represent the detected

symbol vector and uk[i] denote the difference between the forward filter output and the

backward filter output, which can be described as

uk[i] = ωH
f,k[i]r[i] + ωH

b,k[i]ŝk−1[i], (4.2)

where ωH
b,1 = 0 and the (k − 1)-dimensional detected symbol vector is defined as

ŝk−1[i] =
[
ŝ1[i], ŝ2[i], . . . , ŝk−1[i]

]T
. (4.3)

For notational convenience, the forward and backward filters can be concatenated to-

gether as [82]

ω̃k[i] =

ωf,k[i], k = 1[
ωT

f,k[i],ω
T
b,k[i]

]T
, k = 2, . . . , K.

(4.4)

The input can also be concatenated as

r̃k[i] =

r[i], k = 1[
rT [i],−ŝTk−1[i]

]T
, k = 2, . . . , K.

(4.5)
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Figure 4.1: Detailed block diagram of the proposed DFCC-MIMO detector. Recursive

least squares (RLS) algorithm is introduced to iteratively obtain the filter matrix
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Then, we can rewrite (4.2) as

uk[i] = ω̃H
k [i]r̃k[i]. (4.6)

The weight vector for time-varying channels ω̃H
k [i] can be obtained by solving the

standard least squares (LS) problem, the LS cost function with an exponential window is

given by

Jk[i] =
i∑

τ=1

λi−τ
∣∣∣ŝk[τ ]− ω̃H

k [i]r̃k[τ ]
∣∣∣2 (4.7)

where 0 ≪ λ < 1 is the forgetting factor. The optimal tap weight minimizing Jk[i] is

given by [75]

ω̃k[i] = Φ−1
k [i]pk[i] (4.8)

where the time-averaged cross correlation matrix is obtained by

Φk[i] =
i∑

τ=1

λi−τ r̃k[τ ]r̃
H
k [τ ] (4.9)

and the time-averaged cross correlation vector is defined by

pk[i] =
i∑

τ=1

λi−τ r̃k[τ ]ŝ
∗
k[τ ] (4.10)

Using the RLS algorithm [43], the optimal weight in (4.8) can be calculated recursively.

The RLS is summarised in [76], [82] and described below

qk[i] = Φ−1
k [i− 1]rk[i] (4.11)

kk[i] =
λ−1qk[i]

1 + λ−1rH
k [i]qk[i]

(4.12)

Φ−1
k [i] = λ−1Φ−1

k [i− 1]− λ−1kk[i]q
H
k [i] (4.13)

ω̃k[i] = ω̃k[i− 1] + kk[i]ξ
∗
k[i] (4.14)

where

ξk[i] =

sk[i]− ω̃H
k [i− 1]r̃k[i], Training Mode,

ŝk[i]− ω̃H
k [i− 1]r̃k[i], Decision-directed Mode.

(4.15)

This adaptive detection algorithm works in two modes. In the first mode, the filter weights

are trained by the known training sequence s[i]. After the filter weights converge to a

certain point, the algorithm is then switched to the decision-directed mode. In this mode,

the detector uses the detected symbols to update the tap weights. In this case, the quality

P. Li, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 4. ADAPTIVE DECISION FEEDBACK DETECTION WITH CONSTELLATION

CONSTRAINTS FOR MULTI-ANTENNA SYSTEMS 74

I

Q

a1 a2

a3 a4

uk[i]

dth

d

|ǫ/2− dth|

Figure 4.2: The constellation constraints (CC) device. The CC procedure is invoked as

the soft estimates uk[i] dropped into the shaded area. Parameter ϵ denotes the distance

between 2 nearest constellation symbols.

of the detected symbols has a significant impact on the performance of this adaptive DF

detector. In the following subsection the CC algorithm is introduced to obtain enhanced

decisions for each stream and allows this adaptive procedure to achieve a close-to-optimal

error performance.

4.4.1 Decision Feedback with Constellation Constraints

The CC structure introduces a number of selected constellation points as the candidate

decisions when the filter output uk[i] is determined unreliable. A selection algorithm

is introduced to prevent the search space from growing exponentially. The reliability

of the detected symbol is determined by the CC device, which saves the computational

complexity by avoiding redundant processing with reliable decisions. In the following,

the procedure for detecting ŝk[i] for the k-th spatial stream is described, and the detection

of other streams can be obtained accordingly.

After the system is switched to the decision-directed mode, the concatenated filter
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Figure 4.3: The constellation constraints for 16-QAM signals. A number of feedback

candidates are invoked as the decision is dropped into the shaded area. Assuming the red

dot uk[i] is the estimated symbol.

output uk[i] is checked by the CC device which is illustrated in Fig.4.2. The CC structure

is defined by the threshold distance dth, which can be a constant or determined in terms of

SNR.

We also define two regions for the QPSK constellation map: (1) The region inside

the square obtained by connecting four ac, the ac are assumed to have the form, ac =(
± ϵ/2,±(ϵ/2)j

)
, where ϵ is the distance between two nearest constellation symbols.

The estimation uk[i] is considered inside the square if the following equations hold
∣∣ℜ{uk[i]}

∣∣ ≤ ϵ/2∣∣ℑ{uk[i]}
∣∣ ≤ ϵ/2.

(4.16)

where ℜ{·} and ℑ{·} denote the real part and the image part of a complex value, respec-

tively.

(2) Otherwise, the estimation is in the region outside the square obtained.

P. Li, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 4. ADAPTIVE DECISION FEEDBACK DETECTION WITH CONSTELLATION

CONSTRAINTS FOR MULTI-ANTENNA SYSTEMS 76

CASE 1 inside the square

In the first case, the estimation uk[i] is considered as unreliable if the following equation

holds,

d = min
ac∈A

{
|uk[i]− ac|

}
> dth. (4.17)

where d denotes the distance between the estimated symbol uk[i] and its nearest constel-

lation point and ac is each element of the constellation points. Otherwise, the estimated

symbol is closer to the constellations and the decision is considered as reliable.

CASE 2 outside the square

In this case, the equations of (4.16) do not hold, where the estimated symbol uk[i] is

outside the square. In this case, the decision is determined unreliable if the distance from

uk[i] to I(In-phase)-axis and Q(quadrature)-axis is small. Therefore, the estimation is

unreliable if any of the following equations holds,

∣∣ℜ{uk[i]}
∣∣ < ϵ/2− dth, (4.18)

∣∣ℑ{uk[i]}
∣∣ < ϵ/2− dth. (4.19)

Otherwise, the estimated symbol is far away from the axis borders and the estimation is

considered as reliable.

This can be further extend to multi-tier constellations (eg.16-QAM see Fig. 4.3) where

the outer-tier would be similar to CASE 2, but we should also include two additional

equations beside (4.18) and (4.19) which are given as

min
∣∣ℜ{uk[i]} ± ϵ

∣∣ < ϵ/2− dth, (4.20)

min
∣∣ℑ{uk[i]} ± ϵ

∣∣ < ϵ/2− dth. (4.21)

where
∣∣ℜ{uk[i]} ± ϵ

∣∣ are the distances between uk[i] and two vertical lines across the

points (0,±ϵ), respectively. And
∣∣ℑ{uk[i]} ± ϵ

∣∣ are similarly defined as the distances

between uk[i] and two horizontal lines across points (±ϵ, 0), respectively.
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Therefore, for 16-QAM constellation, the estimation is considered as unreliable if any

one of the four equations above (4.18-4.21) holds.

On the other hand, for the inner-tier constellations, if

min
∣∣ak[i]− uk[i]

∣∣ ≥ dth, (4.22)

was true, the estimation is considered as unreliable.

The CC device distinguishes the reliable feedback signals from the unreliable ones,

which allows the DFCC to maintain the complexity at the same level of the conventional

DF structure and saves the computational complexity by avoiding redundant processing

with reliable decisions.

Reliable

If the filter output uk[i] is dropped into the lighted area of the constellation map, the

decision is considered as reliable. A quantization operation Q(·) is then performed as

ŝk[i] = Q(uk[i]). (4.23)

This quantized symbol is a reliable decision for the current stream and used to compute

ξk[i] in the decision-directed mode.

Unreliable

If it is the case that uk[i] is dropped into the shaded area of the constellation map, the

decision is determined as unreliable. The CC processing is invoked and a candidate vector

is generated as given by

L = {c1, c2, . . . , cm, . . . , cM} ⊆ A, (4.24)

The candidates are constrained by the constellation map and the vector is a selection of the

M nearest constellation points to the uk[i]. The size of L can be either fixed or adaptive
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with the channel condition which introduces a trade off between the performance and the

energy efficiency. The refined estimate for this unreliable decision is obtained by

ŝk[i] = copt, (4.25)

where copt is the optimal candidate selected from L. This refined decision will produce a

more accurate ξk[i] which minimizes the MSE in (4.11)-(4.14). The benefits provided by

the CC algorithm are based on the assumption that the optimal feedback candidate copt is

correctly selected. This selection algorithm is similarly defined in Chapter 3 and given as

follows:

In order to find the optimal candidate, a set of tentative decision vectors Bk ={
b1k, . . . , b

m
k , . . . , b

M
k

}
is defined, the number of these tentative decision vectors M equals

the number of selected constellation candidates. Each vector bmk is defined as

bmk [i] =
[
ŝ1[i], . . . , ŝk−1[i], cm, b̂k+1[i], . . . , b̂K [i]

]
. (4.26)

This K × 1 vector bmk consists of the following parts:

(A) (k − 1)-dimensional detected symbol vector ŝk−1[i] which is used in (4.5).

(B) A candidate symbol cm taken from L for substituting the unreliable Q(uk[i]) in the

k-th data stream.

(C) By concatenating (A) and (B) as the previous decisions, the tentative decisions of the

following streams b̂k+1[i], . . . , b̂K [i] are subsequently obtained by the adaptive detector.

Let us define the vector with the candidate constellation point as

šk,m[i] =
[
ŝ1[i], . . . , ŝk−1[i], cm

]T
, (4.27)

=
[
ŝTk−1[i], cm

]T
. (4.28)

Therefore, (4.5) is transformed to

r̄k+1,m[i] =
[
rT [i],−šTk,m[i]

]T
, k = 1, . . . , K. (4.29)

The tentative decision of the (k + 1) stream is

b̂k+1[i] = Q
{
ω̃H

k+1[i]r̄k+1,m[i]
}
. (4.30)

The CC algorithm selects the best constellation point among M candidates according

to the maximum likelihood rule as

mopt = arg min
1≤m≤M

∥∥∥r[i]−Hbmk [i]
∥∥∥2

. (4.31)
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Table 4.1: The pseudo-code of the DFCC algorithm

Initialization: i = 0

0: for k = 1 to K do
1: Φ−1

k [0] = δ−1I ; ωf,k[0] = 1 ; ωb,k[0] = 0;
2: end for where δ is a small positive constant.

RLS weight update: i > 0

3: qk[i] = Φ−1
k [i− 1]rk[i];

4: kk[i] =
λ−1qk[i]

1+λ−1rH
k [i]qk[i]

;

5: Φ−1
k [i] = λ−1Φ−1

k [i− 1]− λ−1kk[i]q
H
k [i];

6: if the system is in the training mode
7: ξk[i] = sk[i]− ω̃H

k [i− 1]r̃k[i];
8: if the system is in the decision-directed mode
9: ξk[i] = ŝk[i]− ω̃H

k [i− 1]r̃k[i];
10: end

11: ω̃k[i] = ω̃k[i− 1] + kk[i]ξ
∗
k[i];

Constellation constraints: Decision-directed mode only

12: for k = 1, . . . ,K
13: uk[i] = ω̃k[i− 1]Hr[i];
14: if uk[i] is unreliable
15: L = [c1, c2, . . . , cm, . . . , cM ]T ;
16: for m = 1 to M do
17: šk,m[i] = [ŝTk−1[i], cm]T ;
18: for q = k + 1 to K do
19: r̄q[i] =

[
rT [i], šTk,m[i], b̂k+1, . . . , b̂q−1

]T ;
20: b̂q = ω̃H

q [i]r̄q[i];
21: end for
22: bmk [i] =

[
šk,m[i], b̂k+1[i], . . . , b̂K [i]

]
;

23: end for

24: copt = argmin1≤m≤M

∥∥∥r[i]−Hbmk [i]
∥∥∥2;

25: ŝk[i] = copt;
26: else
27: ŝk[i] = Q(uk[i]);
28: end if

Then copt is chosen to replace the unreliable decision uk[i]. The same filter weight ωk[i]

is used to process all the candidates, which allows the proposed algorithm to have the

computational simplicity of the adaptive DF detector. The pseudo-code of the proposed

DFCC algorithm is summarized in TABLE 4.1.
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4.4.2 DFCC with Multiple-Branch Processing

The previous subsection shows that the DFCC solves (4.7) with optimal nulling and can-

cellation ordering patterns. In this subsection, the proposed DFCC is applied with several

parallel branches that are equipped with different ordering patterns. By exploiting a cer-

tain ordering pattern, the MB produces a symbol estimate vector. Therefore, a group of

symbol estimate vectors are generated at the end of the DFCC-MB structure. This paral-

lel architecture achieves a higher detection diversity order by selecting the branch which

yields the estimates with the best performance.

Let us define

s′[i] , T ls[i] =
[
s1,l[i], s2,l[i], . . . , sK,l[i]

]T
, (4.32)

a permutation of the transmitted symbol set s[i], ordered by the transformation matrix

T l, l = 1, . . . , L., where each row and each column of T l contain only one “1”. We

also define ŝ′l[i] =
[
ŝ1,l[i], ŝ2,l[i], . . . , ŝK,l[i]

]T as the detected symbol vector and uk,l[i]

denotes the output of k-th forward filter for the l-th branch which exploits the order T l. It

is worth noting that the estimates of the permuted transmitted symbol can be transferred

back to the original order by using T l as

ŝl[i] = T T
l ŝ

′
l[i]. (4.33)

The optimal ordering scheme conducts an exhaustive search of L = K! branches. For a

practical implementation, a number of sub-optimal schemes are used to design the trans-

formation matrices T l codebook, these approaches are proposed in [76]. In this chapter,

the FSB (see Section 3.3.3) is applied in the receiver.

For the branch l, the filter output is given by

uk,l[i] = ω′H
f,k[i]r[i] + ω′H

b,k[i]ŝ
′
k−1,l[i], (4.34)

where the (k − 1)-dimensional detected symbol vector is defined as

ŝ′k−1[i] =
[
ŝ1,l[i], ŝ2,l[i], . . . , ŝk−1,l[i]

]T
, (4.35)

and each entry is obtained by l-th DFCC branch. The forward filter ω′
f,k[i] and backward

filter ω′
b,k[i] correspond to the permuted channel

H ′ , T lH . (4.36)
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The filters can be concatenated together as

ω̃′
k[i] =

ω′
f,k[i], k = 1,[
ω′T

f,k[i],ω
′T
b,k[i]

]T
, k = 2, . . . , K.

(4.37)

the input can also be concatenated as

r̃′
k[i] =

r[i], k = 1,[
rT [i],−ŝ′Tk−1[i]

]T
, k = 2, . . . , K.

(4.38)

Then, we simplify (4.34) as

uk,l[i] = ω̃′H
k [i]r̃

′
k[i]. (4.39)

The LS cost function for the l-th branch is written by

Jk,l[i] =
i∑

τ=1

λi−τ
∣∣∣ŝk,l[τ ]− ω̃′H

k [i]r̃
′
k[τ ]

∣∣∣2 (4.40)

4.4.3 Channel estimation

As we discussed in the previous sections, the MIMO channel state information is re-

quired for selecting the CC candidates (4.31) and for generating the cancellation ordering

codebook for MB processing (4.36). The LS channel estimation algorithm has been in-

vestigated in [80]. Based on a weighted average of error squares, the estimated channel

minimizes the cost function whose expression at time instant i is defined as

JĤ [i] =
i∑

τ=1

λi−τ
∣∣∣r[τ ]− Ĥ [i]s[τ ]

∣∣∣2, (4.41)

where Ĥ [i] is the channel matrix estimate at time instant i. The quantities r[τ ] and s[τ ]

are received signal and pilot symbol vectors at the time instant τ , respectively.

To minimise the cost function, the gradient of the cost function with regard to the

estimated channel matrix should be equated to a zero matrix as

∇Ĥ[i]JĤ [i] = 0NR,K . (4.42)
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By solving the above equation, the LS estimate of the channel matrix is obtained as

Ĥ [i] =
( i∑

τ=1

λi−τr[τ ]sH [τ ]
)( i∑

τ=1

λi−τs[τ ]sH [τ ]
)−1

= D[i]Φ−1[i].

(4.43)

In order to avoid the matrix inversion operation (·)−1, a recursive algorithm is developed.

Let us define

Φ−1[i] = P [i], (4.44)

where D[i] can be obtained iteratively by

D[i] = λD[i− 1] + r[i]s[i]H (4.45)

and P [i] is calculated iteratively by using the matrix inversion lemma,

P [i] = λ−1P [i− 1]− λ−2P [i− 1]s[i]s[i]HP [i− 1]

1 + λ−1s[i]HP [i− 1]s[i]
. (4.46)

The initial state of the parameters are set as D[0] = 0NR,K and P [0] = δ−1
c I , where δc is

a small constant.

4.5 Detection Complexity

The computational complexity of the proposed DFCC and its MB version is given in this

section. Essentially, we detail the complexity of the DFCC procedure with a single branch

(SB), and the complexity of the DFCC-MB can be obtained by multiplying the complexity

of the DFCC by the number of branches L. The detailed computational complexity is

shown in terms of the averaged number of required complex multiplications and floating-

point operations (FLOPS) per symbol detection.

In terms of complex multiplications, the proposed algorithms and other existing

schemes are represented in TABLE. 4.2, N = K = NR is the number of transmit and

receive antenna elements. The parameter M denotes the number of candidates in L when

decisions are determined unreliable, and C denotes the number of constellation points

that correspond to the modulation type. The complexity of the SD is associated with C,

the k-dimensional sphere radius dSD is chosen to be a scaled version of the variance of
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Table 4.2: Computational complexity of algorithms

Algorithms Required complex multiplications

Non-Adaptive OSIC 2N3 +N2 +N

LMMSE –RLS 4N2 + 4N

DF –RLS 28
3 N2 − 4

3

DFCC –RLS WORST ( 283 N2 − 4
3 ) +M( 52N

2 − 3
2N)

DFCC –RLS BEST same as “DF –RLS”

DFCC MB –RLS L times “DFCC –RLS”

Standard SD [67]
∑N

k=1
Ckπk/2

Γ(k/2+1)d
k
SD + 2N2

the noise [67]. The proposed DFCC has the worst case and the best case complexities

situated at the same level of the conventional DF algorithm [82]. In the worst case, all

N decisions are considered unreliable, which means the L is generated for every stream

and the CC selection is invoked N times which brings M(5/2N2 − 3/2N) multiplica-

tions on top of the DF algorithm. Thanks to the CC scheme, we can see from TABLE.

4.3 that when SNR = 16 dB, only a small division of the decisions are considered un-

reliable across the stream layers. The probability of unreliable estimates is decreased as

the detection diversity increases. This leads to the processing of 6.1%, 4.65%, 3.59% on

average over the streams of the estimated symbol for N = 2, 4, 8 antennas, respectively.

For the remaining symbols, the conventional quantization is performed. The decreased

probability of invoking the CC selection suggests that the DFCC may be suitable for a

MIMO system with a larger number of data streams.

According to TABLE. 4.2, the worst DFCC–RLS complexity is (28
3
N2− 4

3
)+M(5

2
N2−

3
2
N) while the first term (28

3
N2 − 4

3
) is the complexity for a conventional adaptive DF

scheme. The second term denotes the additional complex multiplications on top of the

conventional schemes. The additional complexity is obtained as follows:
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Table 4.3: The percentage that the estimate is considered as unreliable.

Layers k 1 2 3 4 5 6 7 8

2× 2 16dB 7.6 4.6 - - - - - -

4× 4 16dB 10.1 4.5 1.9 2.1 - - - -

8× 8 16dB 15.0 6.6 2.1 1.7 1.1 0.6 0.5 0.4

2× 2 12dB 14.9 16.6 - - - - - -

4× 4 12dB 22.1 12.8 11.9 14.7 - - - -

8× 8 12dB 26.6 21.4 16.4 13.4 11.1 10.47 10.0 9.1

• If u1 is unreliable, (by omitting the time index [i]) we replace Q(u1) with cm,m =

1, . . . ,M and the Line.18 - Line.21 of the pseudo-code table 4.1 needs to repeat M

times for the different cm. The involved number of the complex multiplication is

M ×
∑K−1

q=1 q.

• If u2 is unreliable, similar to above, the number of involved number of the complex

multiplication is 1 +M ×
∑K−2

q=1 q.

• If u3 is unreliable, the involved number of the complex multiplication is 2 +M ×∑K−3
q=1 q. ...

• By summing across K antennas we have:
K∑
k=1

(k − 1) +M
K−k∑
q=1

q. (4.47)

The overall additional complexity can be obtained by summing the above number with the

complexity inducted by maximum likelihood selection and reliability checking algorithm.

Fig.4.4 attached below will help to obtain the conclusion above.

In addition, Fig.4.5 depicts the number of required complex multiplications per sym-

bol detection. The plots compare the required operations as the number of antennas in-
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Maximum Likelihood Selection

Maximum Likelihood Selection

Maximum Likelihood Selection

k = 2

k = 3

k = 4

Feedback with constellation constraints

feedback candidates

refined decisions

backward filter weights

Figure 4.4: The blank squares denote the complex elements in the decision backward

filter ωH
b,k, and the coloured squares denote the feedback candidates cm. Dotted squares

represent tentative decisions while the solid squares represent reliable decisions.
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creases. Each DFCC branch has a complexity slightly above the conventional DF-RLS

while it achieves a significant performance gain over the DF-RLS. The DFCC-RLS rep-

resented here has the configuration of M = 4, dth = 0.5 and the DFCC MB-RLS has

L = 10 branches in QPSK modulation. The low complexity of the DFCC algorithm pro-

vides an opportunity to deploy the MB structure with low computational cost, especially

for systems with large transmit antenna arrays. The result also indicated that as K = NR

increases, more branches are need to be applied to prevent more performance degradation

from the SD. This issue was first mentioned in [76], the optimal ordering scheme con-

ducts an exhaustive search of L = N ! branches, where ! is the factorial operator. This

means that for the optimal solution, L needs to be proportional to N !. For example, for

a 4× 4 MIMO system, there are L = 4! = 24 ordering patterns in the optimal ordering

scheme. The detection with the optimal number of branches is not a practical implemen-

tation, therefore, three approaches were introduced in [76], namely Pre-stored patterns

(PSP), Frequently selected branches (FSB) and Listing patterns approach (LPA). These

algorithms are able to find a smaller number of selected branches and keep a near-optimal

performance. A discussion of these alternative solutions is beyond the scope of this thesis.

In this work, we use the FSB as the sub-optimal solution to demonstrate that the algorithm

has the ability to attain a near-optimal performance. It is not easy to know if the number

of the needed branches has to be proportional to N (or N2 or N3 ). However, a series

of studies indicate that the near-optimal FSB requires L branches and L is related to N

instead of N2 or N3 .

The average overall detection complexity of the proposed scheme is also measured in

terms of the average number of FLOPS used. The simulations were performed with the

Lightspeed toolbox [94], in which the number of FLOPS equals 2 for a complex addi-

tion and 6 for a complex multiplication. Fig.4.6 depicts the number of required FLOPS

per symbol detection. The SD has the highest complexity while the Non-Adaptive OSIC

and lattice reduction aided OSIC (LR-OSIC) have complexities many times higher than

the DF–RLS detector. The proposed DFCC–RLS requires a negligible number of addi-

tional FLOPS compared with the DF–RLS detector. The proposed DFCC significantly

improves the overall performance of the conventional DF detection, especially when the

time-varying channel is tracked. The single-branch DFCC has a performance sensitive to

K = NR = N , a higher number of N requires more parallel branches to maintain a com-

parable level of performance of SD. With any given N , the proposed algorithm provides a
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Figure 4.5: Detection complexity in terms of required number of arithmetic operations per

symbol detection against the number of antennas. The proposed DFCC-MB algorithm has

L times the complexity of DFCC which has a similar complexity with the DF scheme.
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Figure 4.6: Detection complexity in terms of required FLOPS per symbol detection,

DFCC with dth = 0.5 has the complexity as low as DF detector at Eb/N0 = 8dB

complexity benefit at high SNR levels, the estimates of the transmitted symbols are more

reliable. Therefore, for most of the time, a single feedback is needed, and the complexity

approaches the conventional DF detector. Fig.4.7 demonstrates the complexity benefit in

terms of SNR. The complexity is sensitive to the SNR, thanks to the reliability checking

scheme, many redundant processing can be avoided in higher SNR region. For the higher

SNR, the estimated symbols have a higher probability to be considered reliable. There

is a constant 42 FLOPS gap when SNR > 25 dB, which is generated by the reliable

checking operations of each estimated symbol. A 4 × 4 MIMO system is adopted with

QPSK transmitted signal we also set the threshold equals to dth = 0.5.
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Figure 4.7: Complexity in terms of required FLOPS per symbol detection, DFCC (M =

4, L = 1) has a decreasing complexity as the SNR increases.

4.6 Iterative Processing Constellation Constraints with

Soft-output

In the following, a soft-output detector with the CCDF architecture is described to im-

prove the performance with error control coding. Let bk,j be the j-th bit of the constel-

lation symbol and (j = 1, 2, . . . , J) where J = log2C is the constellation size. We

also denote L[bk,j] as the log-likelihood ratio (LLR) value for the coded bits bk,j which is

defined as

L[bk,j] = lnP (bk,j = 1)− lnP (bk,j = 0) . (4.48)

Thus, we define a priori LLR of the coded bits bk,j as L[b(p1)k,j ] and a posteriori LLR as

L[b
(a1)
k,j ] = lnP (bk,j = 1|r)− lnP (bk,j = 0| r). (4.49)

The detection processing is performed block-by-block. The soft-input soft-output MIMO

detector computes the extrinsic LLR as

L[b
(e1)
k,j ] = L[b

(a1)
k,j ]− L[b

(p1)
k,j ]. (4.50)
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The extrinsic information is obtained by subtracting the dependency on L[b
(p1)
k,j ] and (4.50)

is re-written as [90]

L[b
(e1)
k,j ] = ln

P
(
bk,j = 1

∣∣∣r)
P
(
bk,j = 0

∣∣∣r) − ln
P
(
bk,j = 1

)
P
(
bk,j = 0

) , (4.51)

= ln

∑
s∈X 1

k,j
P
(
r
∣∣s) exp (f(s))∑

s∈X 0
k,j

P
(
r
∣∣s) exp (f(s)) . (4.52)

and X 1
k,j is the set of all symbol vectors that consist of bits satisfying bk,j = 1 and X 0

k,j is

similarly defined but satisfying bk,j = 0. The joint probability density in (4.51) is obtained

by [91]

P
(
r
∣∣s) ∝ exp

(
− 1

σ2
v

∥r −Hs∥2
)
, (4.53)

and

f(s) =
1

2
(2bT[k,j] − 1)L[b

(p1)
k,j ], (4.54)

where b[k,j] is a length K log2C column vector comprised of bk,j except its (k, j)-th el-

ement is replaced by 0, and L[b
(p1)
k,j ] is the a priori LLR values obtained form the outer

channel decoder. All the entries of L[b
(p1)
k,j ] are set to zeros in the first pass as the initial

probability of the symbol transmission is equal. The extrinsic LLRs of the coded bits are

deinterleaved and used as the a priori LLRs and delivered to the channel decoder which

performs the decoding algorithms as BCJR [65] or Max-log-MAP [95]. The soft decision

obtained from the decoder is then interleaved and fed back to the detector to complete

an iteration. The computational complexity of this MAP detector is high as the size of

the summation increases exponentially with K and C, which implies that too much com-

plexity is required for processing LLR for each bit using (4.51). We now discuss how the

bit-level LLR can be obtained using the complexity-reduced DFCC detector.

In this complexity-reduced detection, the probability density for all the possible trans-

mitted vectors (4.53) are not available. A small set of vectors can be found by deploying

the DFCC detection, the ML vector may still be found in the list of tentative decisions.

Since only a small set of symbol vectors is considered, the DFCC performance is worse

than that of MAP detection when the soft-output is required. However, by appropriately

selecting the tentative decisions, the DFCC performance can approach the MAP detector
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performance. Let B denote the set of tentative decisions obtained from the DFCC detector

B̃ = B1 ∪ B2∪, . . . ,∪BK , (4.55)

If L > 1, we have

B = B̃1 ∪ B̃2∪, . . . ,∪B̃L, (4.56)

and the extrinsic information is obtained by

L[b
(e1)
k,j ] = ln

∑
s∈X 1

k,j

∩
B P

(
r
∣∣s) exp (f(s))∑

s∈X 0
k,j

∩
B P

(
r
∣∣s) exp (f(s)) . (4.57)

In the case that the intersection of the MAP set and the candidate vector set is empty,

X 1
k,j ∩ B = ∅ or X 0

k,j ∩ B = ∅. (4.58)

the LLR for that specific bit can be filled with an arbitrary number with a large magni-

tude. The algorithm of the soft-output DFCC detection is summarized in the following

algorithm table.

4.7 Simulations

4.7.1 Point-to-point MIMO Systems

In this section, several numerical examples are used to demonstrate the overall system per-

formance of using our algorithms. The performance is measured in terms of bit error rate

(BER), obtained by 104 Monte Carlo runs. In our simulations, the SNR per transmitted

information bit is defined as

Eb

N0

∣∣∣
dB

= 10 log10

( NR

R log2 C
· σ

2
s

σ2
v

)
. (4.59)

The total transmitted power Es = K · σ2
s which is evenly distributed to K transmit

antennas. The NR receive antennas collect a total power of NREs which carries K log2 C

coded bits or RK log2 C information bits. R ≤ 1 is the channel coding rate which in-

troduces information redundancy. The coding rate R = 1 is assumed for the simulations

without channel coding.
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Algorithm 1 Algorithm soft-output log-Max-DFCC Detection
Require: r ∈ CNR×1, H ∈ CNR×K , constellation set A, σ2

v , n← 0, L(bp1k,j), TI .

1. Find the set of symbol vectors X 1
k,j ∩ B and X 0

k,j ∩ B
2. for lo← TI {Turbo Iteration} do

3. for k ← 1, . . . , K do

4. for j ← 1, . . . , J do

5. for s ∈ X 1
k,j ∩ B do

6. b← demap(s), bk,j ← 0

7. P(x)← 1
2
(2b[k,j] − 1)L(b

(p1)
k,j ) {Symbol probability}

8. λ1
n ← lnP(x)− ∥r−Hs∥2

σ2
v

9. end for

10. for s ∈ X 0
k,j ∩ B do

11. b← demap(s), bk,j ← 0

12. P(x)← 1
2
(2b[k,j] − 1)L(b

(p1)
k,j ) {Symbol probability}

13. λ0
n ← lnP(x)− ∥r−Hs∥2

σ2
v

14. end for

15. L(b
(e1)
k,j )← max{λ1

n, n = 1, . . . , |X 1
k,j∩B|}−max{λ0

n, n = 1, . . . , |X 0
k,j∩B|}

16. end for {Antenna stream}
17. end for {Bit Label}
18. Deinterleave extrinsic L(b

(e1)
k,j )

19. Perform BCJR decoding and compute L(b
(e2)
k,j )

20. Interleaving extrinsic L(b
(e2)
k,j ) and feedback to detector.

21. end for {Turbo Iteration}
22. Decision of systematic bit is obtained via sign{L(mk)}
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Figure 4.8: BER vs. Eb/N0 with QPSK symbols. The proposed DFCC detection achieves

a near optimal performance in a 4× 4 system configuration with single branch. The num-

ber of candidate constellation points M introduces a trade off between the performance

and the complexity. Number of training vectors I = 50.

In the following simulations, unless otherwise stated, we consider that the pro-

posed algorithms and all their counterparts operate with a channel with independent and

identically-distributed (i.i.d) block fading model. The channel model is of Rayleigh ran-

dom fading and the coefficients are taken from complex Gaussian random variables with

zero mean and unit variance. The QPSK modulation is used; The transmitted vectors s[i]

are grouped into frames consisting of 500 vectors where the first s[1], . . . , s[I] vectors are

training vectors. In each frame, the channel between a transmit and receive antenna pair

is fixed and a single path is assumed. We also assume that the original detection order of

streams has been sorted according to the optimal order as discussed in Section. II.

Fig.4.8 shows the BER against Eb/N0. Assume the channel is known, the DF-RLS

detector (λ = 0.998) proposed in [82] exhibits a similar performance to the Non-adaptive

OSIC detector. The DF-RLS detector has about 7dB performance loss when the target

BER equals 10−3 compared with the performance of SD. A lattice reduction aided MMSE

OSIC detection (LR-OSIC) [96] is also compared in this plot, and it shows a 2dB loss to

P. Li, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 4. ADAPTIVE DECISION FEEDBACK DETECTION WITH CONSTELLATION

CONSTRAINTS FOR MULTI-ANTENNA SYSTEMS 94

0 5 10 15 20
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0

B
E

R

 

 DF −−RLS
DFCC −−RLS (M=4 H

est
)

DFCC −−RLS  (M=4)
DFCC MB −−RLS (M=4 FSB H

est
) 

DFCC MB −−RLS (M=4 FSB)
SD  (H

est
)

SD 

Figure 4.9: BER vs. Eb/N0. The DFCC algorithm achieves a significant performance

gain compared with the DF detector. The optimal performance can be approached by

employing MB in an 8×8 system configuration with perfect (solid) and imperfect channel

estimation (dash). QPSK symbols are transmitted on a Rayleigh fading channel. Number

of training vectors I = 50.

the optimal performance. As for the SD, with a sufficiently large sphere radius selected,

the SD can always produce an ML solution. With 4 constellation constrained candidates

and dth = 0.5, the proposed DFCC-RLS (λ = 0.998) algorithm shows a near-optimal BER

performance at the target BER equal to 10−3. By introducing more branches, the DFCC

MB-RLS can further improve the performance at high SNR regions. In [76], both the

optimum ordering patterns codebook and the FSB codebook were designed to construct

the transformation matrices T l, the FSB codebook was reported with a smaller size in this

case (FSB L = 2).

The BER against Eb/N0 plot for a system with 8 × 8 antennas is demonstrated in

Fig.4.9. DFCC has a 8 dB performance gain compared to the DF at the target BER 10−4.

The channel is assumed unknown and LS channel estimation is applied to all the detectors

indexed by Hest. By introducing MB (FSB L = 6), the proposed DFCC MB achieves a

performance with about 1 dB loss from optimal at the target BER 10−4.

In order to investigate the convergence behaviour of the DF-RLS and DFCC-RLS al-
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Figure 4.10: MSE for filter output in terms of RLS iterations, with 4 × 4 antennas and

QPSK symbols. After 50 training vectors transmitted, the decision-directed mode is

switched on.

gorithms, the MSE of the filter output against the number of update iterations is shown

in Fig.4.10 for QPSK modulation and Fig.4.11 for 16-QAM constellation. Thanks to the

CC scheme, DFCC has a lower converged MSE and the variance of ξk[i] in the decision-

directed mode is significantly reduced.

In order to demonstrate the tracking ability of the proposed detectors in the time-

varying channels, Fig.4.12 and Fig.4.13 present the comparison of BER performance for

various normalized Doppler frequency fdT . In these simulations, each channel between a

transmit and receive antenna pair is varied based on the Jakes model [97]. LS channel es-

timation is applied to the unknown channel. The length of the training sequence is I = 50

and (FSB L = 3, 4× 4) and (FSB L = 3, 8× 8) for DFCC MB detector. The simulation

results show that even with a single-branch (SB), the performance of the SD with channel

tracking can be approached.

Fig. 4.14 demonstrate the MSE for the symbol estimation across all K streams

in terms of RLS iterations, with 4 × 4 antenna configuration and QPSK modulation.
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Figure 4.11: MSE for filter output in terms of RLS iterations, with 4 × 4 antennas and

16-QAM symbols. After 100 training vectors transmitted, the decision-directed mode is

switched on.
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Figure 4.12: Comparison of BER performance for various normalized Doppler frequency

fdT when K = NR = 4 and Eb/N0 = 14 dB, QPSK modulation.
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Figure 4.13: Comparison of BER performance for different detectors with various values

of the normalized Doppler frequency fdT when K = NR = 8 with QPSK modulation.

Eb/N0 = 14dB, and the normalized Doppler frequency fdT equals to 10−2.5 , 10−2.75

, 10−3 respectively. With various values of fdT , the proposed DFCC scheme shows the

improvement in terms of MSE. From the figure we can see that the DFCC also has the

ability to track the fading channel with fdT = 10−3.

In Fig.4.15, we describe the soft input and output behaviour of the detection algorithms

through extrinsic information transfer (EXIT) chart [69] analysis. In this plot, QPSK

modulation with 4 × 4 system are considered. The Eb/N0 is set to 7 dB. IA and IE

represent the mutual information at the input and output of the detector. With a SB, the

proposed DFCC is able to achieve a higher capacity compared to the DF algorithm. With

the increased branches, more tentative decisions are included in the limited vector set B.

The MAP behaviour can be approached by using the number of branches equal to L = 4

and L = 18.

The curves in Fig.4.16 are given for convolutionally coded BER performance on a

Rayleigh block fading channel. The proposed SB DFCC with M = 4 candidates and

dth = 0.5 improves the conventional DF detection performance about 4 dB at target coded

BER equals 10−4. The number of branches L incorporated in the scheme introduces a
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on. The MSE across the 4 layers is significantly reduced.
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Figure 4.16: Coded BER curves of QPSK over 4 × 4 MIMO channels; block size 1000

message bits, code rate R = 1/2, memory 2 convolutional code with polynomial [7, 8]oct.

trade off between complexity and performance. With (FSB L = 18) branches, the DFCC

MB detector approaches the optimal MAP detection performance with only 0.35 dB per-

formance loss when coded BER = 10−4.

4.7.2 Multiuser MIMO Systems

In this subsection, simulations are presented to demonstrate the system performance of

the proposed adaptive multiuser DFCC (AMUDFCC) detection algorithm. We consider

Rayleigh random fading and QPSK modulation. The transmitted vectors s[i] are grouped

into frames consisting of 500 symbol vectors where the first 10 symbol vectors are training

data. Also, a column norm based detection ordering is employed.

The computational complexity is shown in terms of floating-point operations (FLOPS)

per symbol detection. The simulations are performed with the Lightspeed toolbox [94],

in which the number of FLOPS equals 2 for a complex addition and 6 for a complex

multiplication. In Fig.4.17, with block fading where the channel coefficients are taken

from complex Gaussian random variables having zero mean and unit variance. The BER

performances of all schemes improve while the number of receive antenna NR grows
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Figure 4.17: Performance with Eb/N0 = 13 dB, adaptive multi-user decision feedback

with constellation constraints (AMUDFCC) with dth = 0.5 and LS channel estimation.

AMUDFCC has a superior performance to the conventional DF scheme and is not far

from the MLD.

with the number of users K. More importantly, the proposed detector offers a significant

performance gain over the DF-RLS detector at a small extra computational cost as shown

in Fig.4.18. By adding more complexity, the performance can be further improved by

introducing L parallel branches.

For a coded system with LS channel estimation, the BER performance against the

average SNR across all users is shown in Fig.4.19, the receiver structure is discussed in

section 4.6, the proposed AMUDFCC detector has performance gains as compared to the

conventional DF scheme. By increasing the number of branches with different NCO, the

SD performance can be approached.

4.8 Summary

In this chapter, we have developed an adaptive decision feedback based detector for

MIMO transmission systems with varying channels. In this context, we have presented

P. Li, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 4. ADAPTIVE DECISION FEEDBACK DETECTION WITH CONSTELLATION

CONSTRAINTS FOR MULTI-ANTENNA SYSTEMS 101

2 3 4 5 6 7 8

10
2

10
3

10
4

10
5

Number of users K = N
R

N
um

be
r 

of
 r

eq
ui

re
d 

F
LO

P
s 

pe
r 

sy
m

bo
l d

et
ec

tio
n

 

 

SD 
AMUDFCC −−RLS (M=4 L=4) 
DF−−RLS
AMUDFCC −−RLS (M=4) 
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nel estimation. The proposed scheme has a similar cost to the conventional DF structure.
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Figure 4.19: K = 6 users are separately coded by the g = (7, 5)o, rate R = 1/2, memory

2 convolutional code and we use the block size equals 500 vectors, M = 4 candidates and

dth = 0.5. The number of turbo iterations between the detector and the decoder is 3.
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a novel way to improve the BER performance by using the feedback with constellation

constraints. This approach has the ability to effectively address the error propagation

problem in decision driven interference cancellation techniques while maintaining the

low complexity of adaptive detectors.
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5.1 Overview

There are primarily two aspects in distributed base station cooperation (BSC) strategies:

The network-wide optimization of information exchange and the network decentralized

implementation. We are interested in the latter one, where the concept of distributed it-

erative detection (DID) was introduced. This chapter considers BSC for the uplink of a

multiple-user multiple-cell wireless system. We propose a distributed iterative detection
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Figure 5.1: Base stations cooperating to perform JMD, each cluster has 4 BSs and 4 users.

strategy with reduced signalling requirement. We adopt the basic system model which

was introduced by Mayer et al. [22] and Khattak et al. [26] and compare the proposed

distributed detection strategy with the existing ones. The motivation of the work is to

achieve an inter-cell-interference (ICI) suppression with low backhaul traffic and detec-

tion complexity.

5.2 Introduction

Apart from the traditional voice and text message services, the growing demand for broad-

band mobile multimedia applications requires higher data rates and reliable links between

base stations and mobile users. Since the available spectrum is limited, the improvement

of system capacity can be achieved by introducing a higher frequency reuse and the micro

cell planning. In such a network configuration, a higher spectral efficiency is obtained,

however, the ICI will become dominant at the cell edges, especially in an aggressive

frequency reuse scenario (such as full frequency reuse). The application of interference

mitigation techniques is necessary in these systems to prevent a restricted data rate of the

users located at the cell edge and improve the system fairness.

The strategies to deal with the ICI in the system uplink including the joint multiuser
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detection (JMD) [60] and distributed iterative detection (DID) [23]. In terms of JMD, the

BSs for each cell make the received signals available to all cooperating cells. With this

set up, the receivers not only use the desired signal energy but also the energy from the

interferers leading to much improved received SINR. Both array and diversity gains are

obtained resulting in substantial increase in system capacity [23]. Despite the optimality

of JMD, it needs to exchange all the quantized received signals between the cooperative

BSs via a wired backbone network and brings about huge data traffic. To reduce the

backhaul, clusters are introduced to the network applying JMD, where a group of BSs

form a cluster and the JMD is performed in a central unit as Fig. 5.1. Since the receive

antennas are away from each other and located in each cell and the signals are joint pro-

cessed at single central unit, this method is named distributed antenna system (DAS) [23]

and therefore a virtual MIMO system is formed [60]. In this structure, the information

is exchanged within the cluster which reduces the backhaul and the detection complexity

in each JMD. Even with the benefits mentioned above, the restrictions of DAS are listed

below:

• By assuming unlimited backhaul capacity, the performance of the DAS is optimal

for an isolated cluster. However the performance degrades in a large network with

many clusters, especially at the boundaries of the clusters.

• The central units are required to support a large number of users in the cluster

with many cells which introduce huge complexity even taking into account that the

central units usually have high computational power.

• It requires transmission of quantized received signals over the wired network to the

central unit which causes the data traffic to become many times higher than that in

conventional cellular systems. [26]

• In the implementation aspect, the organization of cells and clusters is a complex task

which requires additional scheduling and signalling information to be transferred

via backhaul.

The above problems can be partially addressed by reducing the number of cells in each

cluster and by introducing advanced interference mitigating techniques for the detection

in each central unit at the cost of additional backhaul traffic between the clusters. In the
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extreme case, each cluster has a single cell and therefore a DID is reported as an alter-

native of JMD. With the DID configuration, iterative signal processing is performed at

the network level. The receiver detects each user stream at its corresponding cell and

iteratively refines the estimate of the transmitted symbol with the help of the information

provided by other cooperating cells. Each BS detects the desired user/stream only, the

other interfering signal is treated as noise. The output of the decoder is used to recon-

struct the transmitted symbol and this estimate is spread to the cooperating BSs. Each

BS has an interface to exchange the estimation result to the neighbours, the reconstructed

interferers are cancelled from the received signal and the power of interference reduces as

more iterations are performed. As for the JMD, the complexity of computing extrinsic in-

formation is exponential in both the number of transmit antennas and the number of cells.

With the DID, for each cell, the complexity of the search required to compute the ML

solution is restricted to the number of data streams in the cell, this results in a significant

reduction in complexity [23]. Although with the advantages, the restrictions of DID are

listed below:

• The DID scheme does not benefit from array gain and diversity gain since the en-

ergy received from the cooperating BSs are cancelled without utilization, the per-

formance is bounded by an isolated single-user single-cell system.

• The iterative interference cancellation is performed in the network scale, which

requires additional backhaul traffic between interfering BSs. A number of iterations

is required to achieve an acceptable performance and may result in detection delay

that must be minimised.

The first problem mentioned above can be partially addressed by forming a cluster

adopting a small number of cells with highly correlated users, a small sized virtual MIMO

system is created in each cluster and array/diversity gain can be achieved inside the cluster.

With this configuration, the interference mitigation with the DID is performed among the

clusters. By varying the number of cells in each cluster, we can establish a tradeoff as

illustrated in Fig.5.2.

Many works in the literature have been reported based on the DAS configuration and

we leave the description of such systems to the references [60–62]. In the remaining part
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Figure 5.2: Tradeoff between the diversity/array gain and backhaul/complexity.

of this chapter, we focus on the interference mitigation techniques dealing with the mul-

tiuser multicell detection through base station cooperation (BSC) in uplink, interference-

limited, aggressive frequency reuse scenario (Frequency reuse factor 1). In the proposed

DID with reduced message passing (DID-RMP) algorithm, the cooperating BSs exchange

the information while performing single or multi-user detection. Instead of exchanging

the soft estimates introduced in [23, 56], the proposed algorithm generates a sorted list

containing the probability of the constellation symbols given the channel information. The

indices of the constellation symbols with high probability are exchanged via the backhaul

link. A selection unit (SU) is also proposed in the network to choose the best candidates

on the list. The indices are exchanged among the BSs in an iterative manner and the

system improves the estimate of the desired signal with each iteration pass. The indexed

interference at the cooperating BSs is subtracted from the received signal resulting in a re-

duced interference level and more reliable estimates of data. The simulation results show

that the proposed DID-RMP scheme is able to obtain a performance better than the soft

symbol cancellation technique described in [23, 26] while requiring less backhaul traffic.

5.3 Data Model of a Networked MIMO Cellular System

In this chapter, we are interested in an asymmetric multiuser detection scenario of a net-

worked MIMO cellular system. We assume the cellular network can detect groups of

users that are strongly received by several cooperating BSs. We consider that several cells
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ϕ are grouped into one cluster, the diversity gains and array gains can be obtained inside

the cluster, the interference among the clusters is mitigated through the application of

DID and the proposed schemes. Since we are generally interested in mitigating the inter-

cluster interference, in order to clarify our description, in this section we only consider

the special case ϕ = 1, where each cell represents a cluster. The applications with more

cells in the cluster ϕ > 1 are straightforward.

Let us consider an idealized synchronous uplink single-carrier narrowband cellular

network that is aiming at capture most of the features of a realistic wireless system with

respect to the interference and the need for backhaul use. We define M as the number

of cooperating BSs and K as the number of users in the cooperating cells, and assume

the users and BSs have a single transmit antenna. Extensions to multiple antennas are

straightforward. In cooperating systems, a limited number of cells can work together

in order for the backhaul overhead to be affordable [98]. In this system, the transmit-

ted data of each user is protected by the error control coding separately. A message

vector mk from user k is encoded by a channel codes before a bit interleaving opera-

tion. The resulting bit-sequence bk has Q entries and k = 1, 2, . . . , K are indices of the

interfering users. The sequence is then divided into groups of J bits each, which are

mapped to a complex symbol vector as the output of the user k, this operation is denoted

as sk = [sk,1, . . . , sk,Qs ] = map(bk) where Qs = Q/J and each entry of sk is taken from

a complex constellation A, with E{|sk,j|2} = σ2
s .

A K × 1 symbol vector s[i] =
[
s1[i], s2[i], . . . , sK [i]

]T is transmitted simultaneously

by all K users. At base station m, the received symbols rm[i] are given by

rm[i] = gm[i]s[i] + vm[i], 1 ≤ i ≤ Qs. (5.1)

where [i] is the time index and vm[i] denotes the additive zero mean complex Gaussian

noise with variance E{v[i]v[i]∗} = σ2
v .

The entries of the 1 × K row vector gm are the element-wise product of hm,k and
√
ρm,k, where hm,k is the complex channel realization from the k-th user to the m-th BS

with i.i.d CN (0, 1). The coefficients ρm,k reflect the path loss with respect to BS m and

user k. Similarly to [26], we further separate rm[i] into four terms,
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rm[i] = gm,dsd[i] +
∑
n∈Cm

gm,nsn[i] +
∑
n∈Ĉm

gm,oso[i] + v[i],

=
√
ρm,dhm,dsd[i] +

√
ρm,n

∑
n∈Cm

hm,nsn[i]+

√
ρm,o

∑
n∈Ĉm

hm,oso[i] + v[i].

(5.2)

where the first term denotes the desired signal (indexed by d), the second and the third

terms denote the strong interference and the weak interference (indexed by n and o, re-

spectively). The coefficients ρn and ρo characterize the channel gains with strong and

weak interferers, separately. The set of indices of all strongly received interference at BS

m is denoted as Cm and the weakly received interference is denoted as Ĉm.

As indicated in [16], the strongest interferer dominates the total received ICI, in this

model, we assume the number of strongly received signal mn ≤ 5. For example, for a

system with K = M = 4 and ζ = 2 as the number of strong interferers, we assume the

weak interference ρm,o is zero and ρm,d = 1, and the coupling matrix is formed as

P =


1 ρm,n ρm,n 0

0 1 ρm,n ρm,n

ρm,n 0 1 ρm,n

ρm,n ρm,n 0 1

 . (5.3)

In this configuration, we assume the BSs have the ability to know which cells are

the interfering signals coming from. The BS in the desired cell then notifies the BS of

the interfering cells and obtains the estimated transmit signal from that cell to perform

the interference cancellation. The exchanged interfering information is transmitted via a

wired backhaul which connects all the base stations in the network.

The signal-to-noise ratio (SNR) is defined as the ratio of the desired signal power at

the receiver side and the noise power, which is mathematically described as

Es

N0

∣∣∣
dB

:= 10 log10
E
{
∥hm,dsd∥2

}
E{v2}

. (5.4)

Let us also denote the average signal-to-interference ratio (SIR) of the desired user k as

SIRk := 10 log10
E
{
∥gm,dsd∥2

}∑
n∈Cm E

{
∥gm,nsn

∥∥2}+
∑

n∈Ĉl E
{
∥gm,oso∥2

} . (5.5)
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5.3.1 Data Model for Users and BSs Equipped with Multiple Anten-

nas

In this part, a data model for networked MIMO systems in which the users and BSs are

equipped with multiple antennas is discussed. The scalar rm[i] and vector gm[i] in (5.1)

are now described in the vector rm[i] and matrix Gm[i] forms respectively, as given by,

rm[i] = Gmz[i] + vm[i], (5.6)

where rm ∈ CNR×1 is the received vector for the m-th BS and Gm ∈ CNR×KNT is the

combined channel matrix with

Gm =
[
Gm,1, . . . ,Gm,k, . . . ,Gm,K

]
, (5.7)

where Gm,k ∈ CNR×NT denotes the channel between user k and BS m. Note that each

user has NT transmit antennas and each BS has NR receive antennas. The quantity z ∈
CKNT×1 is the collection of the data streams from the K users z = [sT1 , . . . , s

T
K ]

T and

sk ∈ CNT×1.

The equation (5.2) can be rewritten as

rm[i] = Gm,dsd[i] +
∑
n∈Cm

Gm,nsn[i] +
∑
n∈Ĉm

Gm,oso[i] + vm[i],

=
√
ρm,dHm,dsd[i] +

√
ρm,n

∑
n∈Cm

Hm,nsn[i]+

√
ρm,o

∑
n∈Ĉm

Hm,oso[i] + vm[i],

(5.8)

where we assume the NT antennas for each user have same channel gain coefficients ρn

and ρo. The coupling matrix given in (5.3) and the definition of SNR and SIR can be

generalized accordingly.

Although using multiple antennas in both users and BS receiver is promising, it re-

quires additional signal processing power to decode the inter-antenna interference intro-

duced by the same user. In order to simplify the description of the proposed structure

and its traditional counterparts, we employ the single antenna case NT = NR = 1 in the

following sections.
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5.4 Iterative Detection with Reduced Message Passing

In this section, the decision-aided DID structure is described in detail, in the first subsec-

tion the distributed iterative signal processing in an interference limited cellular network

is reviewed [24]. In the following two subsections, the soft and hard parallel interference

cancellation algorithms are based on the quantized estimates from the cooperating BSs is

given. The last subsection is devoted to the description of the proposed DID-RMP.

5.4.1 Decision-aided Distributed Iterative Detection

The setup for performing the distributed detection with the information exchange between

base stations is shown in Fig.5.3. The K users’ data are separately coded and modulated

to complex symbols after the bit-interleaving. At each BS, the received signal rm[i] is the

collection of the transmitted signal and the Gaussian noise.

In addition, each BS equip a communication interface for exchanging information with

the cooperating BSs. The information is in the form of a bit sequence that represents the

quantized soft estimates. The interface is capable of transmitting and receiving infor-

mation. Via these interfaces, each cooperating BS is connected to a device, namely the

selection unit (SU), and is ready to receive and transmit the cooperating information. The

proposed SU has very limited computational power and it can be integrated with BSs in

the network.

In each BS, a block of received signals rm[i] is used by the MAP demapper to compute

the a posteriori probability in the form of log-likelihood-ratios (LLRs), which are given

by

Λp
1[bj,k[i]] = log

P [bj,k[i] = +1|rm[i]]
P [bj,k[i] = −1|rm[i]]

, (5.9)

where the equation can be solved by using Bayes’ theorem and we leave the details to

the references [18, 56]. The detector and decoder are serially concatenated to form a

“turbo” structure, the extrinsic information is exchanged by the two soft-input soft-output

components. We denote the intrinsic information provided by the decoder as Λp
2[bj,k[i]]
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Figure 5.3: An example configuration showing a cooperating 3-cell network. The dashed

lines between the transmitter and receiver denote the ICI while the solid lines denote the

desired signal.

and the bit probability is obtained as

P [bj,k[i]] = log
P [bj,k[i] = +1]

P [bj,k[i] = −1]
. (5.10)

From [56], the bit-wise probability is obtained by

P [bj,k[i] = b̄j] =
exp

(
b̄jΛ

p
2[bj,k[i]]

)
1 + exp

(
b̄jΛ

p
2[bj,k[i]]

) ,
=

1

2

[
1 + b̄j tanh

(1
2
Λp

2[bj,k[i]
)]

.

(5.11)

where b̄j = {+1,−1}. Let us simplify the notation P
[
sk[i]

]
:= P

[
sk[i] = cq

]
where

cq is an element chosen from the constellation A = {c1, . . . , cq, . . . , cA}. The symbol

probability P [sk[i]] is obtained from the corresponding bit-wise probability, and assuming

the bits are statistically independent, we have

P
[
sk[i]

]
=

J∏
j=1

P
[
bj,k[i] = b̄j

]
,

=
1

2J

J∏
j=1

[
1 + b̄j tanh

(1
2
Λp

2[bj,k[i]
])]

.

(5.12)

From (5.11) and (5.12) we can conclude that
∑

|A| P
[
sk[i]

]
= 1.
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5.4.2 Soft Interference Cancellation

The soft interference cancellation has first been used in an iterative multiuser CDMA sys-

tems by Wang et al in [56]. In this algorithm [22], the soft replicas of ICI are constructed

and subtracted from the received signal vector as

r̃m,k[i] = rm[i]− gmũk[i] (5.13)

and

ũk[i] =
[
s̃1[i], . . . , s̃k−1[i], 0, s̃k+1[i], . . . , s̃K [i]

]T
, (5.14)

where

s̃k[i] = E{sk[i]} =
∑
cq∈A

cqP
[
sk[i] = cq

]
. (5.15)

The first-order and second-order statistics of the symbols are obtained from the symbol a

priori probabilities as

σ2
eff = var{sk[i]} = E

{∣∣sk[i]∣∣2}− ∣∣s̃k[i]∣∣2,
E
{∣∣sk[i]∣∣2} =

∑
cq∈A

|cq|2P
[
sk[i] = cq

]
.

(5.16)

Users and BSs equipped with Multiple Antennas

In the case that the users and BSs are equipped with multiple antennas, then equation

(5.13) can be reformulated by

r̃m,k[i] = rm[i]−Gmũk[i], (5.17)

the soft interference cancellation may be deployed in two cases. For example (i) user-

based cancellation

ũk[i] =
[
s̃T1 [i], . . . , s̃

T
k−1[i],0, s̃

T
k+1[i], . . . , s̃

T
K [i]

]T
, (5.18)

where 0 ∈ ZNT×1. The remaining signal is the combination of all the data streams

transmitted from user k. (ii) In this situation, all the interfering links are mitigated and

the stream-based interference cancellation is performed with the cancellation vector

ũk[i] =
[
s̃T1 [i], . . . , s̃

T
k−1[i], s̃

′T
k [i], s̃

T
k+1[i], . . . , s̃

T
K [i]

]
, (5.19)
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where

s̃′
T

k [i] =
[
s̃1[i], . . . , s̃nt−1[i], 0, s̃nt+1[i], . . . , s̃NT

[i]
]T

. (5.20)

This soft interference cancellation based algorithm generally outperforms hard inter-

ference cancellation since it considers the reliability of the cancellation procedure. How-

ever, the performance heavily depends on the quantization level [26]. Exchanging the

quantized soft bits or LLRs convey reliability information among BSs and involves a large

amount of backhaul data per cell per iteration, which make soft interference cancellation

unattractive [23, 24].

5.4.3 Hard Interference Cancellation

With the hard interference cancellation, the estimates of the interfering symbols are the

constellation symbols. In this case, the quantization is performed for each estimated

symbol. The equation (5.14) is rewritten as

ûk[i] =
[
Q(s̃1[i]), . . . ,Q(s̃k−1[i]), 0,Q(s̃k+1[i]), . . . ,Q(s̃K [i])

]T
, (5.21)

where Q(·) is the slicing function that depends on the constellation adopted. The constel-

lation indices are exchanged among the cooperating BSs. Since no reliability information

is included, the cooperation procedure requires significantly less backhaul traffic as com-

pared with the soft interference procedure. All the detected information symbols are

exchanged in the initial iteration, and in the subsequent iterations, only the symbols with

the constituent bits that have flopped between the iterations are exchanged. The indexed

constellation symbols are reconstructed at the neighbouring BSs and subtracted from the

received signal, the residual noise is considered equal to zero and σ2
eff = σ2

v . In the hard

interference cancellation configuration, the backhaul traffic can be further brought down

by introducing a reliability check of the symbols, and only the reliable symbols are ex-

changed [24].
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5.4.4 Distributed Iterative Detection with Reduced Message Passing

By organizing the probabilities obtained by (5.12) in decreasing order of values, a list of

tentative decisions of sk[i] is obtained in each BS as given by

Lk[i] , {c1, c2, . . . , cτ}k, (5.22)

where 1 ≤ τ ≤ |A| and

Pr[c1] ≥ Pr[c2] ≥ . . . , P r[cτ ], (5.23)

where

Pr[cq] , P
[
sk[i] = cq

∣∣rm]. (5.24)

For the sake of simplicity, we remove any symbol with P
[
sk[i]

]
≤ ρth from the list.

The threshold ρth may be fixed or varied in terms of SINR.

For each user, we generate a tentative decision list Lk. By listing all the combinations

of the elements across K users, a length Γ tentative decision list is formed. Each column

vector on the list denotes a possible transmission symbol vector s′l where l = 1, . . . , Γ .

The size of the list is obtained by

Γ =
K∏
k=1

|Lk|, 1 ≤ Γ ≪ |A|K , (5.25)

where | · | denotes cardinality. In order to obtain an improved performance, the maximum

likelihood (ML) rule can be used to select the best among the Γ candidate symbol vectors.

The cost function for the ML criterion, which is equivalent to the minimum Euclidean

distance criterion and the selected vector is given by

s′ML = arg min
l=1,...,Γ

∥∥r[i]−Gs′l[i]
∥∥2
, (5.26)

where r[i] = [r1[i], . . . , rm[i], . . . , rM [i]]T and G = [gT
1 , . . . , g

T
m, . . . , g

T
M ]T are received

signals and the user channels for all cooperating cells.

In the above expression, the knowledge of gm and the received signal rm[i] for each

cell is required to be passed to the SU, which may lead to high backhaul traffic. However,

we may distribute the norm operation to each cell. In a complex space CK , the common

norm is

∥d∥ ,
√
|d1,m|2 + · · ·+ |dK,m|2. (5.27)
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where d = r[i]−Gs′l[i] and dk,m = rm[i]−gms
′
l[i]. For each BS, we separately calculate

the minimum partial weights by

lmin
m = argmin

l
|rm[i]− gms

′
l[i]|2. (5.28)

The index lmin
m is obtained by the SU via backhaul and an enhanced detection is obtained.

In each iteration, the received signal is subtracted by

r̃k[i] = rk[i]− hkũ
ML
k [i], (5.29)

where the hard symbol cancellation vector consists of

ũML =
[
s̃ML
1 , . . . , s̃ML

k−1, 0, s̃
ML
k+1, . . . , s̃

ML
K ]. (5.30)

With this multiple candidate structure, an enhanced ICI suppression is obtained. The

indices of the symbols on the tentative decision list Ak are propagated among the neigh-

bouring BSs which require a reduced backhaul traffic compared with that of the soft signal

cancellation algorithm. Additionally, as more cancellation iterations are performed, the

size of the list reduces as the recovered bits are more reliable. This further decreases the

backhaul traffic with the following iterations which is not the case with the approach that

adopts a soft interference cancellation strategy.

5.5 Simulations

In the simulations, we assume ρm,o is zero, ρm,d = 1 and strongly received interference

have ρm,n = 0.5. All BSs are assumed to have the same signal-to-noise ratio (SNR) and

the interfering BSs are also assumed to have the same signal-to-interference ratio (SIR).

In order to evaluate the performance of the distributed turbo system, we select a rate R =

1/2 convolutional code with polynomial [7, 5]oct. The coded bits are modulated as QPSK

symbols before transmission. The decoding is performed by a max-log-MAP decoder and

the block length is set to 1024. The number of detector and decoder iterations is fixed to

10. The loop of interference cancellation performed by the network stops with iteration

4 and the number of cells in each cluster is ϕ = 1, if not otherwise stated. In the soft

interference cancellation [22] [56], a uniform quantizer is applied in order to quantize the
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Figure 5.4: The solid lines denote a cooperating 4-cell network with ζ = 2 strong inter-

ferers per cell. The dashed lines denote a cooperating network with a 9-cell network with

ζ = 3 strong interferers per cell.

−10 −5 0 5 10 15
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

A
ve

ra
ge

 c
od

ed
 B

E
R

 

 

DID soft cancel. iter. 0
DID−RMP iter. 0
DID soft cancel. iter. 4
DID−RMP iter. 4
Isolated
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ferers per cell.
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Figure 5.6: The solid lines denote a cooperating 4-cell network with ζ = 2 strong inter-

ferers per cell. The dashed lines denote a cooperating network with 9 cells with ζ = 3

strong interferers per cell.

soft estimates. Without significant information loss compared with the unlimited backhaul

performance, 6 quantization bits per real dimension backhaul traffic is assumed [24].

Fig. 5.4 and Fig. 5.5 compares the performance of the proposed DID-RMP algo-

rithm with that of DID based on hard and soft information exchange in terms of parallel

interference cancellation iterations, respectively. By applying the RMP algorithm, the

proposed DID has a similar performance as compared with the soft cancellation scheme

and outperforms the DID with hard cancellation by about 2 dB in each iteration.

In Fig. 5.6 the proposed DID-RMP outperforms the soft interference cancellation

scheme, the improvement increases with a higher number of strong interferers ζ . With

ζ = 3 interferers, the proposed scheme achieves about 3 dB gain as compared with the

system using hard cancellation at the target BER = 10−3.

Fig. 5.7 illustrate the backhaul traffic as function of the number of strong interferers

ζ. As QPSK modulation is used, 2 bits are required to index the constellation symbols to

perform hard interference cancellation. The plots indicate that increasing the number of
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Figure 5.7: Number of bits exchanged per symbol detection in a 9-cell network.

strong interferers for each cell leads to the rise of the backhaul traffic.

In Fig. 5.8, the averaged number of tentative decision in the network is depicted. The

number of tentative decisions Γ decreases as more iterations are performed. In the pro-

posed scheme, only indices are exchanged, the backhaul traffic becomes lower in each

iteration due to the fact that Γ is getting smaller. On the other hand, the soft interfer-

ence cancellation scheme does not benefit from the iterations due to the requirement of

updating the soft estimates. We can also see from the plots that the average number of

candidates quickly converges to 1, which means low additional detection complexity is

required for each BS. Compared with Fig. 5.6, the target BER region from 10−3 to 10−4

and the corresponding SNR is ranged 8 to 10 dB. The average number of tentative deci-

sions per symbol is below 3 for ζ = 3. In case of two strong interferers, we can see that

negligible additional backhaul overhead is required.

All the DID in the above simulations are bounded by the isolated cell performance,

since ϕ = 1 and there is only one pair of receive and transmit antennas available in each

cluster, no array gain and diversity can be obtained. However, in Fig. 5.9 we assume a

cooperating 4-cell network with ζ = 2 strong interferers per BS, we group the four cells

into two clusters and ϕ = 2. A 2× 2 distributed MIMO system is created in each cluster
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Figure 5.8: The number of tentative decisions Γ decreases as the increase of SNR. With

a smaller threshold ρth selected, more decision candidates are generated, especially in the

low SNR region.
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Figure 5.9: Performances of a cooperating 4-cell network with ζ = 2 strong interferers

per BS, we group the four cells into two clusters ϕ = 2 and single cluster ϕ = 4.
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Figure 5.10: Performances of a cooperating 2-cell network with ζ = {1, 1} strong inter-

ferers per BS in which we assume a single cell for each cluster ϕ = 1 and NR = NT = 2

antennas for each BS and user.

and the interference is mitigated between two clusters. We also investigate a single cluster

system with ϕ = 4, assuming unlimited backhaul (UB), a 4×4 distributed MIMO system

is created and high diversity and array gain are obtained.

Fig. 5.10 illustrated a system model with multiple antenna equipped users and BSs,

we build a two cell network where each cell has a single user which has NT = 2 transmit

antennas. The BSs for the cells also have NR = 2 antennas ready for detection. Each

BS receives the desired signal as well as the interference from the adjacent cell. Due to

the fact that 2 data stream is seen as interfering signal, we use ζ = {1, 1} to discriminate

from the single antenna case. In this figure, we use two isolated bounds as the reference

and with 4 iterations, the soft cancellation performance can be achieved by using RMP

algorithm with ρth = 0.2.
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5.6 Summary

We have discussed the multiuser multicell detection through base station cooperation in

an uplink, high frequency reuse scenario. Distributed iterative detection has been intro-

duced as an interference mitigation technique. In this chapter, we have compared the soft

and hard information exchange and cancellation schemes and proposed a novel hard in-

formation exchange strategy based on RMP. The proposed algorithm significantly reduces

the backhaul data compared with the soft information exchange while it obtains a better

bit error performance.
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Chapter 6

Conclusions and Future Work

6.1 Summary and Conclusions

In this thesis, we have investigated interference mitigation based detection algorithms and

their application to point-to-point, multiuser, and multicell MIMO systems. Various in-

terference suppression techniques such as multiple feedback successive interference can-

cellation (Chapter 3), adaptive decision feedback detection with constellation constraints

(Chapter 4) and distributed iterative detection with reduced message passing (Chapter 5)

have been proposed, investigated and compared with the traditional technologies such as

successive interference cancellation, decision feedback detection as well as the optimal

maximum likelihood detection and sphere decoders.

In the following, we summaries the work in the thesis in terms of the content of chap-

ters.

In Chapter 2, the capacity of MIMO systems has been reviewed in both deterministic

and random channels. The analysis shows that the capacity grows linearly as more an-

tenna pairs are equipped in the system. Spatial multiplexing gains provided by the MIMO

systems stimulated the investigation of various detectors which are summarised in the

second part of the chapter. In the latter sections of Chapter 2, channel codes have been

introduced to bring information redundancy and protect the message bits. At the receiver
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side, an iterative detection and decoding structure has been described and an analytical

tool named extrinsic transfer chart has been reviewed.

The well known successive interference cancellation detection algorithm has the abil-

ity to separate the spatially multiplexed signals on a MIMO channel. However, the sub-

optimal algorithm has significant performance loss compared with the optimal maximum

likelihood detection and sphere decoding algorithms. In Chapter 3, we have proposed

a multiple feedback algorithm to enhance the performance of the conventional succes-

sive interference cancellation detection, where reliability checking is introduced and the

unreliable estimates are replaced by a feedback candidate selected based on the chan-

nel information and the received vector. Soft-output detection is obtained by using the

MMSE estimated symbols in each spatial layer and therefore the bit likelihood informa-

tion can be obtained and the iterative detection and decoding can be performed in both

the point-to-point and multiuser MIMO systems.

The successive interference cancellation introduced in Chapter 3 has a relatively low

detection complexity by assuming that the channel is varied frame by frame. The MMSE

filter can be used repeatedly within the frame and the channel matrix inversion is com-

puted at the beginning of each frame. However, if it is the case that the channels are fading

rapidly, the conventional detection algorithms generally bring about expensive complex-

ity in the time domain since the filter vectors required to be update accordingly. In order

to address this problem, a decision feedback algorithm has been introduced in Chapter 4,

where a recursive least squares based adaptive algorithm has been developed to update the

forward and backward filters. The proposed constellation constraints aided detector re-

places the unreliable estimates with the constellation symbols which effectively mitigate

the error propagation in the decision feedback loops.

In Chapter 5, the base station cooperation is considered in a multicell, high frequency

reuse scenario, a number of distributed iterative detection are studied based on previously

reported literatures. The optimal distributed detections exchange all the soft detection

estimates with all the adjacent base stations. Since a large amount of information need

to be transmitted via a wired backhaul, the exchanging of hard bit information is pre-

ferred, however, the performance degradation is experienced. In Chapter 5, we consider a

message passing technique in which each base station generates a detection list with the
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probabilities for the desired symbol that are sorted according to the calculated probabil-

ity density. Then, the network selects the best ones from the lists and conveys the index

of the constellation points among the cooperating cells. The proposed distributed itera-

tive detection with the reduced message passing introduce low backhaul traffic overhead

compared with the hard bit exchange and outperforms the previously reported hard/soft

information exchange algorithms.

6.2 Future Work

On one hand, all the techniques described above assume that there is a single propagation

path between the transmit and receive antenna pairs. The channel may be generalized to

a multipath channel in which equalization is required by the receiver. The interference

mitigation techniques developed in Chapter 3 and Chapter 4 may be incorporated in the

equalizer design. On the other hand, the receivers discussed in Chapters 2 - 5 are operated

in narrowband systems and can be naturally extended to the broadband communications

by using orthogonal frequency division multiplexing techniques.

Some suggestions on the possible future work based on this thesis are given below:

• To consider multicell MIMO systems with cooperative signal relaying [13].

• By applying the techniques introduced in the previous chapters to help solve the

synchronization problem in communication networks [33].

• In terms of error control coding, stronger codes such as turbo codes and LDPC can

be used to replace the convolutional codes used in the thesis [67].

• The interference cancellation developed in Chapter 3 and Chapter 5 may be applied

with physical layer network coding to increase the network throughput.

• Resource allocation may be applied to the network introduced in Chapter 5 and

therefore increase the per-cell capacity.

• Hardware implementation of the multiple feedback receiver structure proposed in

Chapter 3.

P. Li, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 126

• The massive MIMO and reduced-rank techniques can be applied for parameters

detection and estimation [99, 100].
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Appendix

Since

vMMSE = (HHH +
σ2
v

σ2
s

I)−1HHv, (1)

by using singular value decomposition (SVD), the MMSE post-detection noise power is

expressed as

∥vMMSE∥2 =
∥∥∥(HHH +

σ2
v

σ2
s

I)−1HHv
∥∥∥2

=
∥∥∥(V ΣV H +

σ2
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σ2
s

I
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V ΣUHv
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UHv
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.

(2)

From the above equations we can conclude that the performance of linear detection is

directly related to the power of the MMSE effective noise. The noise enhancement which

is calculated as

E
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Glossary

AMUDFCC Adaptive Multiple User Decision Feedback detection with Constellation

Constraints

AP Access Point

APP A Posteriori Probabilities

AWGN Additional White Gaussian Noise

BER Bit-Error-Rate

BICM Bit Interleaved Coded Modulation

BLAST Bell LAb Space Time

BPSK Binary Phase Shift Keying

BS Base Station

BSC Base Station Cooperation

CC Constellation Constraints

CCI Co Channel Interference

CDMA Code Division Multiple Access

CSI Channel State Information

C-SIC Conventional SIC

DAS Distributed Antenna System

dB Decibel

DF Decision Feedback

DFCC Decision Feedback detection with Constellation Constraints

DID Distributed Iterative detection

EXIT EXtrinsic Information Transfer

FEC Forward Error Correction

FLOPS FLoating point Operations Per Second

FSB Frequently Selected Branches

JMD Joint Multiple-user Detection

Hz Hertz

IAI Inter Antenna Interference

IC Interference Cancellaton

ICI Inter Cell Interference
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ISI Inter-Symbol Interference

LD Linear Detection

LDPC Low Density Parity Check

LLR Log-Likelihood Ratio

LPA Listing Patterns Approach

LR Lattice Reduction

LS Least Squares

LTE Long Term Evolution

MAP Maximum A Posteriori

MB Multiple Branch

MF-SIC Multiple Feedback Successive Interference Cancellation

MIMO Multiple-Input Multiple-Output

ML Maximum Likelihood

MMSE Minimum Mean Square Error

MSE Mean Square Error

MSEW Maximum Squared Euclidean Weight

MUI Multiple User Interference

NCO Nulling and Cancellation Order

NSC Non-Systematic Convolutional

OFDM Orthogonal Frequency Division Multiplexing

OSIC Ordered SIC

PCI Perfect Channel Information

PDF Probability Density Function

PIC Parallel Interference Cancellation

PSK Phase-Shift Keying

PSP Pre- Stored Patterns

QAM Quadrature Amplitude Modulation

RLS Recursive Least Squares

RMP Reduced Message Passing

RSC Recursive Systematic Convolutional

S/P Serial to Parallel

SAC Shadow Area Constraints

SB Single Branch
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SC Soft Cancellation

SD Spatial Diversity

SD Sphere Decoder

SIC Successive Interference Cancellation

SINR Signal to Inerference plus Noise Ratio

SIR Signal to Interference Ratio

SISO Soft-Input Soft-Output

SISO Single-Input Single-Output

SM Spatial Multiplexing

SNR Signal to Noise Ratio

SOVA Soft Output Viterbi Algorithm

SP Set Partitioning

SPIC Soft Parallel Interference Cancellation

STBC Space-Time Block Codes

STTC Space-Time Trellis Codes

SU Selection Unit

SVD Singular Value Decomposition

WiMAX Worldwide interoperability for Microwave Access

ZF Zero Forcing
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